Вспышки сверхновых не только оставляют после себя «звездные саваны» пылегазовых оболочек, но и активно формируют окружающий космический «рельеф», в значительной степени определяя свое галактическое окружение. Влияние их в том, что в результате взрывов сверхновых интенсивно перемешиваются облака пыли и газа, изменяется химический состав и месторасположение будущих поколений звезд и целых звездных систем. Подтверждением этому может служить сферическая туманность в соседней галактике Большое Магелланово Облако. Это яркий и очень большой пузырь в межзвездном пространстве протяженностью около 300 световых лет, выдутый вспышками сверхновых звезд и заполненный очень разреженным расширяющимся горячим газом.
У звезд более массивных, нежели Солнце, конец жизненного цикла куда более зрелищный. Даже после сгорания всего гелия массы такой звезды при ее сжатии оказывается вполне достаточно для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций ядерного синтеза углерода, затем кремния, магния и так далее, по мере роста ядерных масс. При этом каждая новая реакция в ядре звезды сопровождается продолжением предыдущей в ее оболочке.
Все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа.
Но железо – это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку и для его распада, и для добавления дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, которое не способно послужить топливом ни для каких дальнейших ядерных реакций.
Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. За короткий отрезок времени в несколько секунд свободные электроны буквально растворяются в протонах ядер железа. Так все вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление электронного газа падает до нуля.
Внешняя оболочка звезды, из-под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся оболочки с нейтронным ядром очень высока. Она с огромной скоростью отскакивает от ядра и разлетается во все стороны от него – звезда буквально взрывается в ослепительной вспышке сверхновой звезды.
За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые!
После вспышки сверхновой и разлета оболочки из звезд массой в десятки солнечных образуются нейтронные звезды с диаметром приблизительно 15–20 км. В конечном результате возникает быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами.
У сверхплотных ядер нейтронных звезд более низкая энергия, чем у обычного атомного ядра. Так что прирост массы сверхплотного ядра будет энергетически выгоден.
Можно предложить заманчивую перспективу обуздания этого звездного «монстра», используя сверхплотное ядро в качестве своеобразного источника энергии путем рассеивания на нем потока обычных частиц.
Вполне может быть, что в далеком будущем человечество научится таким образом не только решать свои энергетические проблемы, но и утилизировать «отходы» жизнедеятельности, превращая «мусор цивилизации» в полезное излучение.
Таким образом, изучение парадоксальной физики нейтронных звезд дает возможность заново проверить единство законов природы. Со времени создания квантовой механики ученые настойчиво ищут макроквантовые явления, связывающие законы микро– и макромира. Поэтому было бы очень важно не только качественно описать, но и количественно смоделировать эволюцию таких квантовых астрофизических объектов, как нейтронные звезды. История научных исследований показывает, что многие гипотезы, которые казались когда-то экзотическими, становились простыми и очевидными истинами после экспериментального обнаружения явлений. Несомненно, что дальнейшее изучение процессов, протекающих в нейтронных звездах, позволит сделать еще много новых захватывающих открытий.
Читать дальше
Конец ознакомительного отрывка
Купить книгу