Быстроходность важна тем, что для получения электрического тока приемлемого качества (~50Гц) необходимо, что бы быстроходность ВК была как можно больше. Больше линейная скорость конца лопасти, т. е. больше частота вращения ВК, т. е. больше число оборотов генератора, т. е. ток, вырабатываемый этим генератором ближе к желаемым 50 Гц. На практике недостающие обороты, помимо быстроходности «добирают» применением редукторов (коробки передач, повышающей число оборотов на валу генератора), применения многополюсных генераторов, использованием электрических схем повышающих частоту переменного тока и т. п.
Быстроходность остаётся одним из определяющих понятий для выбора типа ВЭУ. Оперируя этими двумя важными параметрами и глядя, на вышеприведённый график можно рассуждать о том, почему же в современной ветроэнергетике в подавляющем большинстве случаев применяют трёхлопастные горизонтальноосевые башенные ВЭУ, использующие подъёмную силу. ВК использующие подъёмную силу имеют больший коэффициент использования мощности, чем использующие силу сопротивления при достаточно большом коэффициенте быстроходности. Башенные – потому что позволяют использовать ветровой поток на высоте 100 м от земли, горизонтальноосевые по тем же причинам (наилучшее соотношение λ с Ср ). А вот с тремя лопастями вопрос остаётся открытым. Казалось бы, двухлопастные ВК имеют наилучшее соотношение λ с Ср , а применяются крайне редко. Точнее в «большой» ветроэнергетике вообще практически не применяются. Причин две: при слишком высоком λ может возникнуть такая ситуация, когда конец лопасти уйдёт в так называемый флаттерный режим при превышении скорости звука (~340 м/с); двухлопастные ВК подвержены сложным динамическим нагрузкам (биение) связанным с двухполюсностью (по числу лопастей) ВК. В то время как трёхлопастные ВК более равномерно распределяют нагрузки от лопастей на три полюса. С другой стороны, становится понятным, почему для получения механической энергии (момент на валу) при, например подъёме воды из используются многолопастные ВЭУ. При неплохом Ср он имеет крайне низкий λ, т. е. вращается крайне медленно, но, по закону сохранения момента количества движения с максимально возможным для ВЭУ усилием.
Рис .2 Главные энергетические характеристики наиболее распространенных ветродвигателей
Существуют два способа регулирования мощности. Первый способ – поворотом лопасти относительно направления ветра, изменяя так называемый «угол атаки», то есть угол, под которым ветер набегает на лопасть и от которого зависит «подъемная» сила лопасти, которая преобразуется в ее вращение. Этот способ по-английски называется «питч-регулирование» (pitch – «ставить», то есть лопасть принудительно ставится в определенное положение). Ветроустановкис поворотом лопастей можно использовать для регулирования мощности как в зависимости от скорости ветра, так и по заданию диспетчера. При этом наибольшая возможная мощность определяется скоростью ветра.
Второй способ заключается в том, что профиль лопасти выполняется различным по длине. В результате при увеличении скорости ветра на отдельных частях лопасти наступает, срыв потока и ее «подъемная» сила уменьшается. Таким образом, при скорости ветра выше номинальной удается держать мощность ветроустановки равную номинальной. Способ называется «стол» (stall – «застревать»), то есть часть потока ветра как бы застревает и не производит работу. В ветроустановках такого типа принудительно регулировать мощность нельзя. И это их недостаток. Но их достоинство состоит в том, что не нужен сложный механизм поворота лопастей. Тем не менее, практически во всех мощных ВЭУ используется первый способ. Коэффициент использования энергии ветра Ср зависит от многих конструктивных особенностей, но, в конечном счете, от профиля лопасти и от степени ее шероховатости, а также от соотношения между скоростью вращения лопастей и скоростью ветра, называемом коэффициентом быстроходности. Этот коэффициент определяет, в конечном счете, экономичность ветроустановки.
Ветроустановку характеризуют следующие параметры ветра:
– стартовая скорость ветра, обычно в диапазоне от 2,5 до 4,0 м/с, при которой ВЭУ начинает вращение;
– номинальная скорость ветра, обычно от 10 до 14 м/с, при которой мощность ветроустановки достигает номинального значения;
Читать дальше