Мы обратились к химическим реакциям, чтобы на их примере показать, как можно осуществить реакцию синтеза атомных ядер, то есть заставить соединиться, например, два ядра дейтерия. Оказывается, надо дейтерий также разогреть, но до такой высокой температуры, при которой движущиеся атомы лишились бы своих электронных оболочек, дейтерий перешел бы в четвертое состояние, и лишь потом его ядра при соударении будут образовывать ядро трития и свободный протон.
Не нужно забывать, что химические и ядерные реакции (в данном случае реакция синтеза) качественно различны. В первой из них соединение атомов или молекул приводит к образованию нового вещества, но не нового элемента. Для осуществления химической реакции достаточно придать атомам или молекулам относительно небольшие скорости движения. В реакции синтеза совершенно другая ситуация. Чтобы соединить ядра, их нужно разогнать до гораздо больших скоростей движения.
Ведь ядра атомов несут положительный электрический заряд, а всякие одноименно заряженные частицы отталкиваются, и чем меньше расстояние между ними, тем больше силы отталкивания. Для преодоления этих сил отталкивания и нужно придать ядрам колоссальные скорости порядка 500–800 километров в секунду! Такую большую скорость ядра дейтерия приобретут только при температуре 100–150 миллионов градусов.
Таков первый путь освобождения энергии ядра. Второй путь — деление ядер. А есть ли еще какие-либо способы высвобождения энергии ядра? Пока, к сожалению, нет, или, точнее, мы их пока не знаем.
В реакциях деления и синтеза ядер в тепло и излучение превращается от 0,1 до 0,5 процента вещества. При химических реакциях, как мы уже говорили, эта величина составляет всего лишь одну десятимиллионную (10 -7) часть. Значит, овладев энергией деления и синтеза, человечество увеличит калорийность (теплотворную способность) топлива в миллионы раз. Это очень важный и своевременно взятый рубеж. Но, овладев им, человек начинает думать о взятии нового. Это и не удивительно.
«Человек создан затем, чтобы идти вперед и выше», — говорил Максим Горький, поэтизируя это качество людей.
Если же думать о практическом значении такого «опережения событий», то, пожалуй, не скажешь лучше известного польского писателя-фантаста С. Лема: «…в предыстории практика, естественно, опережала теорию, ныне же теория обязана провидеть пути практики, ибо за всякое невежество, проявленное сейчас, человечеству придется дорого уплатить потом».
Итак, стоит вопрос, который задают и ученые-теоретики, и экспериментаторы, занимающиеся физикой ядра — существуют ли пути превращения в энергию большего количества вещества, чем реакции деления и синтеза ядер. Возможны ли они в принципе?
В принципе такие пути возможны. Нужно только найти законы, управляющие процессами большего превращения вещества в энергию.
Один из таких возможных процессов называется аннигиляцией. Это слово образовано от латинского «nihil» — ничто. Буквальный перевод: превращение в ничто, уничтожение. Физики называют аннигиляцией превращение элементарных частиц (протонов, нейтронов, электронов), обладающих в неподвижном состоянии массой, в другие формы материи, например в гамма-кванты, имеющие массу покоя, равную нулю (электромагнитное излучение). Ясно, что речь не идет об уничтожении материи, а о превращении одного ее вида движения в другой. Только простоты ради мы иногда будем называть этот процесс превращением вещества в энергию.
Аннигиляция происходит при столкновении какой-либо элементарной частицы, например, протона, с ее античастицей — антипротоном. Обладая той же массой, что и протон, она имеет не положительный, а отрицательный заряд и отличается рядом других свойств.
Эта ядерная реакция найдена не только на бумаге, но и осуществлена во многих экспериментальных установках. Если аннигиляция протона и антипротона происходит в вакууме — образуются гамма-кванты, несущие 34 процента энергии; электрон и его положительно заряженный антипод позитрон с 16 процентами энергий. Половину энергии уносят нейтрино частицы с весьма большой проникающей способностью. Удержать их невозможно: свою долю энергии они уносят в необозримые просторы вселенной. Однако другую половину удержать удается. Если аннигиляция будет происходить в плотной среде, то энергия, уносимая нейтрино, уменьшается до 9 процентов.
Казалось бы, все обстоит ладно. Но есть один неприятный факт: на Земле, да и, кажется, во всей Солнечной системе антивещества нет. В распоряжении людей есть только технические способы получения искусственного антивещества. Здесь уже есть некоторые успехи. В лабораториях получены антипротоны, антиэлектроны (позитроны), даже созданы атомы антивещества: антиводород, антигелий. Однако задача — значительное уменьшение количества энергии, необходимой для создания античастиц, — еще не решена. В существующих способах на создание антипротонов или антиэлектронов бомбардировкой ядер ускоренными электронами или протонами тратится почти столько же энергии, сколько получается потом при аннигиляции полученных античастиц с частицами. Коэффициент полезного действия в такой схеме составляет не более 0,1 процента. Следовательно, чтобы получить одну килокалорию аннигиляционной энергии, надо предварительно затратить 999 килокалорий энергии того вида, которым мы располагаем, например электроэнергии.
Читать дальше