Помимо названий двух упомянутых выше видов обучения существуют и некоторые другие термины, связанные с разработкой и применением искусственного интеллекта. Я расскажу о них вкратце, но помните, что тем людям, которые заняты в основном бизнесом, вполне достаточно поверхностного понимания этой терминологии. Итак: существует понятие «нейронные сети» – это термин, используемый для описания процесса, в котором искусственный интеллект имитирует способ обработки информации человеческим мозгом. Множество «нейронов» (в случае человека – это нервные клетки, которых у нас в мозгу около 100 млрд) связаны друг с другом с различной прочностью, причем прочность связи может меняться в процессе обучения как человека, так и машины.
Приведем простой пример. В упомянутом выше случае с распознаванием изображения собаки нейрон, отвечающий за признак «черный нос», будет иметь прочную связь с нейроном, несущим ответ «собака», тогда как нейрон, отвечающий за признак «рога», с нейроном «собака» связи иметь не будет. Все нейроны искусственного интеллекта связаны друг с другом послойно, причем каждый слой характеризуется все возрастающим уровнем сложности. Описанная конструкция называется глубокой нейронной сетью, сокращенно – ГНС (англ. Deep Neural Networks, DNN). Архитектуру ГНС использует технология, называемая «машинное обучение», в которой модель разрабатывает сама машина, а не человек, пишущий код (как в предыдущих примерах). Попробуйте теперь представить себе эти термины как концентрические круги: искусственный интеллект – это общая технология, машинное обучение является основным ее принципом, а технически все это осуществляется с помощью ГНС.
Разумеется, в мире искусственного интеллекта есть и множество других терминов: «анализ дерева решений», «программирование индуктивной логики», «обучение с подкреплением», «байесовские сети» и т. д., но я буду упоминать их лишь тогда, когда это станет абсолютно необходимо. В целом же эта книга посвящена только применению искусственного интеллекта в бизнесе, а не описанию заумных технологий.
Работая консультантом по управлению бизнесом, я помогал различным организациям справляться с постоянно накапливающимися в деловой сфере проблемами, от повышения производительности и проведения реструктуризации до использования аутсорсинга и роботизации процессов. С искусственным интеллектом я впервые познакомился в 2001 году, занимая должность главного технологического директора в подразделении корпоративного венчурного бизнеса одной международной страховой компании. Моя роль заключалась в том, чтобы находить новые технологии, в которые мы могли бы вкладывать средства и внедрять в деятельность нашей фирмы (обычно мы называли этот процесс «инкубатором»). Одна из таких технологий основывалась на идее «умных» (компьютерных) страховых агентов, которых можно было бы использовать для оптимизации бизнес-процесса: каждый агент имел бы конкретную цель, но вместе с тем мог «договариваться» с другими агентами, чтобы их совместный результат был наиболее эффективным. Также мы думали о том, чтобы система могла определять наиболее рациональный способ прохождения грузовых автомобилей через порт или метод получения максимального дохода от размещения рекламы в газетах с учетом размеров рекламного места и повторяемости объявлений. Хотя в то время мы не называли это искусственным интеллектом, это был фактически именно он – речь шла об использовании компьютерных алгоритмов для поиска оптимальных решений практических проблем.
Теперь перенесемся сразу в 2017 год. К этому моменту моя деятельность была уже практически полностью сосредоточена на искусственном интеллекте. Я работал с многочисленными компаниями и предприятиями, помогая им создать стратегию использования ИИ – определить требуемые им функции искусственного интеллекта, найти правильное технологическое решение, выбрать поставщика, создать пошаговую инструкцию для внедрения. Все это я делал, разумеется, не как технолог, а как человек, который «просто» понимает возможности искусственного интеллекта и то, как он может решать те или иные проблемы бизнеса. Есть множество людей гораздо умнее меня, способных создавать алгоритмы и разрабатывать компьютерные модели, но именно такие люди редко понимают коммерческую составляющую задачи. Я же вижу себя «переводчиком» между учеными, технологами и бизнесом. В случае искусственного интеллекта задача перевода технологии на язык бизнеса несопоставимо труднее, чем при внедрении более привычных информационных технологий. Вот почему я и захотел написать эту книгу – чтобы донести понимание необходимости (и сложности) правильного диалога между разработчиками и предпринимателями туда, где его можно использовать наилучшим образом: на передний край развития бизнеса.
Читать дальше