История фиксирует ключевую роль, которую паровая машина сыграла в промышленной революции, однако вопросы, которые она поставила перед фундаментальной наукой, имели не меньшее значение. Можем ли мы разобраться в паровой машине с математической точностью? Существует ли предел эффективности, с которой она способна преобразовывать тепло в полезное действие? Имеются ли в базовых процессах, протекающих в паровой машине, аспекты, не зависящие от деталей механической конструкции и используемых материалов и относящиеся, таким образом, к универсальным физическим принципам?
Ломая голову над этими вопросами, французский физик и военный инженер Сади Карно положил начало новому направлению науки – термодинамике, изучающей теплоту, энергию и работу. По продажам трактата Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» [20] Карно С. Размышления о движущей силе огня и о машинах, способных развивать эту силу. – М.: Государственное издательство, 1923.
издания 1824 г., впрочем, об этом никак невозможно было догадаться. И хотя идеи Карно были восприняты далеко не сразу, на протяжении следующего столетия им суждено было вдохновить ученых на создание принципиально нового взгляда на физику.
Традиционный научный взгляд, сформулированный в математическом виде Исааком Ньютоном, состоит в том, что физические законы выдают точные и недвусмысленные предсказания касательно движения вещей. Назовите мне пространственное положение и скорость объекта в конкретный момент, перечислите действующие на него силы – а остальное сделают Ньютоновы уравнения, предсказывающие траекторию объекта в дальнейшем. Будь то Луна, удерживаемая тяготением Земли, или бейсбольный мяч, который вы только что отправили в полет, предсказания эти, что подтверждается наблюдениями, совершенно точны и сходятся точка в точку.
Но в этом-то все и дело. Если взять школьную физику, то в ней – как вы, возможно, вспомните – при анализе траекторий макроскопических объектов мы обычно, даже не оговаривая этого, принимаем огромное множество упрощений. Для Луны и бейсбольного мяча мы забываем об их внутреннем строении и считаем, что то и другое представляет собой точечную массивную частицу. Это довольно грубое приближение. Даже крупинка соли содержит в себе около миллиарда миллиардов молекул, а ведь это всего лишь крупинка соли. Тем не менее когда Луна обращается по орбите вокруг Земли, нам, как правило, нет дела до беспорядочного движения той или иной молекулы, обитающей в пыльном Море Спокойствия. Когда бейсбольный мяч несется к цели, нам нет дела до колебаний той или иной молекулы в его пробковой сердцевине. Нас интересует только общее движение Луны или мяча. А для этого достаточно применить законы Ньютона к этим упрощенным моделям – и дело в шляпе [21] Представление бейсбольного мяча в виде единичной массивной частицы без внутренней структуры – грубая аппроксимация этого самого мяча. Однако применение Ньютоновых законов к этой приближенной модели мяча дает точное классическое движение центра масс мяча. Для движения центра масс третий закон Ньютона гарантирует, что все внутренние силы уравновешивают друг друга, поэтому движение центра масс зависит исключительно от приложенных к мячу внешних сил.
.
Эти успехи лишь подчеркивают проблему, с которой столкнулись физики XIX в., занимавшиеся паровыми машинами. Горячий пар, выталкивающий поршень двигателя, состоит из громадного количества молекул воды, там может быть триллион триллионов частиц. Мы не можем игнорировать эту внутреннюю структуру, как при анализе движения Луны или бейсбольного мяча. Именно движение этих частиц – то, как они сталкиваются с поверхностью поршня, отскакивают от нее, сталкиваются со стенками цилиндра и вновь потоком устремляются к поршню, – лежит в основе работы двигателя. Проблема в том, что никто и нигде, каким бы гениальным он ни был и какие бы мощные компьютеры ни использовал, ни при каких обстоятельствах не сможет рассчитать все индивидуальные траектории, по которым движется такое громадное множество молекул воды.
Что же, тупик?
Можно счесть и так. Но оказывается, нас может спасти смена точки зрения. Большие совокупности иногда открывают возможности для значительных упрощений. Наверняка сложно и даже невозможно точно предсказать, когда вы в следующий раз чихнете. Однако если расширить наш взгляд до более крупного множества всех людей на Земле, то мы сможем предсказать, что в следующую секунду во всем мире раздастся приблизительно 80 000 чиханий [22] В исследовании под заголовком «Как часто чихают и сморкаются нормальные люди?» (B. Hansen, N. Mygind, "How often do normal persons sneeze and blow the nose?" Rhinology 40 , no. 1 [Mar. 2002]: 10–12) утверждается, что в среднем люди чихают примерно раз в сутки. Поскольку людей на Земле около 7 млрд, это дает нам 7 млрд чиханий в сутки на весь мир. В сутках 86 400 секунд, поэтому получаем около 80 000 чиханий в секунду в мире.
. Суть в том, что при переходе на статистический взгляд численность населения Земли становится ключом – а не препятствием – для прогностической силы. Большие группы часто демонстрируют статистические закономерности, отсутствующие на уровне отдельных объектов.
Читать дальше