Рис. 7. Докембрийские формы прокариотов и эукариотов [Buick, Dunlop, 1990] 1 — древнейшие биогенные остатки — сфероиды в породах толщи Уоррауом, Австралия; 2 — строматолиты различных форм и размеров; 3 — нитевидные формы и сфероиды цианобактерий из кремнистых отложений Ганфлинт в Канаде; 4 — реконструкция способа деления клеток водоросли Glenobotrydion (эукариота) из отложений Биттер-Спрингс в Австралии; 5 — мягкотелые животные позднего докембрия, реконструированные по отпечаткам в отложениях с возрастом 700 млн лет из Австралии и Англии
Скорее всего, похолодание, повлекшее за собой оледенение, было вызвано теми же причинами, что и более поздние оледенения. Среди них едва ли не главным могло быть понижение концентрации диоксида углерода в воздухе на рубеже архея и протерозоя, что привело к уничтожению существовавшего парникового эффекта. Одной из причин этого, вероятно, была жизнедеятельность примитивных фотосинтезирующих организмов — прокариотов (в их клетках отсутствовало ядро), в буквальном смысле «съевших» избыточный углекислый газ и выделивших значительное количество кислорода (рис. 7). Их распространению способствовало значительное увеличение площади континентов 3–2 млрд лет назад и соответственно площади прибрежного мелководья, где обитали фотосинтезирующие микроорганизмы. Таким образом, чтобы свести на нет парниковый эффект и существенно понизить среднюю температуру на поверхности Земли, первым фотосинтезирующим организмам потребовалось 1,5 млрд лет. Хотя самые значительные следы гуронского оледенения обнаружены в Северной Америке, в районе Канадского щита, оно затронуло и ряд других континентов, существовавших в протерозое. Длительность этого эпизода в истории Земли еще не определена.
Муссоны обрушиваются на сушу
Завершение гуронского оледенения совпало с началом нового длительного этапа развития в геологической истории Земли, ознаменовавшегося широчайшим распространением совершенно уникальных осадочных образований, по существу не имеющих аналогов в современной седиментационной палитре. Речь идет о джеспиллитах, или band-iron formation (сокращенно BIF), которые представляют собой чередование слойков, в высокой степени обогащенных железом, со слойками, сложенными кремнеземом. Незначительная толщина слойков, до нескольких миллиметров, позволяет предположить, что в них, как и в плейстоценовых ленточных глинах, называемых варвами, отразилась сезонная изменчивость климата. В плейстоцене и голоцене с периодом паводков было связано поступление в бассейн седиментации терригенного глинистого материала. В жаркое, засушливое время происходили активизация биоты и отложение на дне вещества, обогащенного органическими остатками. В раннем протерозое живые организмы еще не расселились широко в фотическом слое морских и океанских водоемов, поэтому они не могли непосредственно определять в тот или иной сезон седиментационные процессы. Их влияние проявилось через способность многих докембрийских микроорганизмов к фотосинтезу. Дело в том, что снижение содержания углекислого газа в атмосфере докембрия сопровождалось накоплением в ней кислорода. Последний легко вступает в реакцию с закисным железом, переводя его в оксидное состояние: FeO —> Fe 2.
Так как первичная земная кора была изначально в сильной степени обогащена железом и марганцем, аккумуляция кислорода в воздухе привела к окислению этих металлов. Это нашло отражение в появлении красноцветных осадков, так как присутствие железа в оксидной или оксигидратной форме придает ему красный или бурый цвет. Следует отметить, что образование первых BIF произошло еще в позднем архее. Самые древние из них имеют возраст 3,8 млрд лет. Однако массовый характер это явление приобрело в раннем протерозое, в интервале с 2,3 до 1,7 млрд лет назад.
Резонно спросить: какое отношение ко всему этому имеют сезонные изменения климата? Посмотрим на современную латеритную кору выветривания, типичную для низких широт с гумидным тропическим климатом. В сезоны дождей, связанные обычно с приходом муссона, огромные массы воды обрушиваются на сушу. При этом наблюдается не только разрушение коренного субстрата и почв водными потоками, т. е. физическое выветривание суши. Гораздо более эффективным фактором эрозии в этих условиях является гидролиз — химическое взаимодействие воды с минералами горных пород. Сначала оно ведет к их выщелачиванию, т. е. к выносу щелочных и щелочноземельных элементов (натрий, калий, кальций, магний) из структуры, а затем к частичному или полному ее разложению с образованием либо новых минералов, главным образом глинистых, либо оксидов — Fe 2, AI 2O 3, SiO 2и оксигидратов — Fe(OH) 3, Al(OH) 3. Более подвижные из этих соединений (Fe 2О 3, SiO 2и др.) в виде взвеси и в коллоидной форме выносятся речными и паводковыми водами в конечный водоем стока. В то же время в латеритной коре выветривания, защищенной железистой кирасой, накапливаются малоподвижные оксиды и оксигидраты алюминия, дающие начало залежам бокситов. Происходит, таким образом, разделение (дифференциация) вещества. Оно, однако, не завершается процессами, протекающими в коре выветривания и на путях переноса вещества. В озерном или полуизолированном морском водоеме дифференциация продолжается. Вначале на дно садится вещество глинистой природы вместе с сорбированным железом. Когда же наступает сухой сезон и вследствие испарения части воды происходит концентрация растворенных в ней солей, возникают благоприятные условия для хемогенной седиментации. В замкнутых и полузамкнутых обстановках начинается новообразование минералов, обогащенных кремнеземом. Обычно образуются слоистые (смектиты или корренситы) или псевдослоистые силикаты с дефицитом алюминия в структуре (палыгорскит, сепиолит), иногда цеолиты.
Читать дальше