Кремнезем в отличие от карбоната кальция более устойчив к растворению в морской воде. Поэтому детрит, сложенный опалом-А, проходя водную толщу океана, почти не разрушается. Как правило, скорости аккумуляции кремнистых морских осадков значительно выше, чем карбонатных. После захоронения под плащом более молодых отложений в кремнистых илах начинаются активные процессы трансформации и перераспределения вещества, приводящие к растворению или перекристаллизации многих органических остатков. При этом аморфная фаза (опал-А) переходит в кристаллическую (опал-КТ), а затем в халцедон и кварц. Все это сопровождается резким сокращением порового пространства и образованием прочных, отвердевших разностей — кремней и порцелланитов. Это уже породы, горизонты которых отличаются большой прочностью. Кремнистые осадки, залегающие среди глин или карбонатов, зачастую окаменевают первыми. Однако даже в этих условиях в них сохраняются отдельные раковинки или панцири кремнистых организмов, свидетельствующие об их биогенной природе.
Остатки диатомей и радиолярий встречаются и в очень древних отложениях, широко распространенных в Альпийском складчатом поясе. Радиолярии гораздо более древняя группа, чем диатомеи. Сложенные ими породы, радиоляриты и яшмы, часто соседствуют в разрезах с базальтами и пестрыми или красными сильно преобразованными сланцами. Отсутствие в тех же разрезах карбонатов и терригенных отложений, типичных для континентов и их окраин, дало повод думать, что древние кремнистые породы аналогичны современным радиоляриевым илам, т. е. они возникли в центральных глубоководных частях древнего океана.
Радиоляриты занимают промежуточное место в ряду от радиоляриевых илов к яшмам. Последние нацело перекристаллизованы в недрах, в условиях воздействия высоких температур и давлений. В них очень редки идентифицируемые органические остатки. Яшмы широко используются как поделочный камень, и мало кто знает, что это всего-навсего маленький реликт дна давно исчезнувших морей. И сложен он мельчайшими остатками организмов, обитавших на Земле в палеозойскую или мезозойскую эру. Основной минеральной фазой яшмы является халцедон или скрытокристаллический β-кварц.
Другую группу кремнистых пород, или силицитов, составляют диатомиты, опоки и трепела. Эти образования характерны не только для разрезов ложа океана в высоких широтах. Еще более они распространены по периферии островных вулканических дуг в умеренном и нивальном климате, где бурному цветению диатомовых водорослей благоприятствуют частые вулканические извержения. Часть попавшего в воду пепла разлагается, что приводит к обогащению ее кремнекислотой. Так, воды Тихого океана, находящегося в кольце вулканических дуг, гораздо сильнее обогащены кремнеземом, чем воды Атлантического и Индийского океанов.
Диатомиты — светлые высокопористыс легкие породы, составленные панцирями диатомей той или иной степени сохранности. Они сцементированы микрокристаллическим кремнеземом, высвободившимся при распаде тех же скорлупок диатомей или вулканических продуктов. Содержание кремнезема в описываемых породах выше 50 %. Особо чистые разности диатомитов, а также опок и трепелов являются ценным сырьем для изготовления высококачественных керамических изделий. Прочность, легкость и устойчивость к ядовитым химическим соединениям, в том числе к кислотам и щелочам, поставили керамику на особое место. Она считается материалом будущего, который придет на смену чугуну, стали и различным сплавам. В Японии уже созданы экспериментальные автомобильные двигатели, полностью состоящие из керамических деталей.
Трепела и опоки являются во многих случаях перекристаллизованными диатомитами. В шлифах они выглядят как скопление мелких глобул различной величины, впаянных в тонкокристаллическую кремнистую массу. В трепелах в качестве примеси еще различаются отдельные спикулы губок, полураспавшиеся панцири диатомей, в опоках их практически не видно. Последние отличаются большей крепостью, тяжелее трепелов и имеют более темную окраску. Если лизнуть поверхность трепела, то язык прилипнет к нему на мгновение. Описываемые породы способны из-за своей высокой пористости впитывать различные жидкости. Поэтому их часто используют в качестве поглотителей. История изобретения динамита связана с этой их способностью. Рассказывают, что однажды в лаборатории шведского химика и изобретателя А. Нобеля один из мастеров пролил нитроглицерин на кусок кизельгура (так называли в Западной Европе в конце прошлого столетия опоки). Нитроглицерин полностью впитался в поры кизельгура. Воспользовавшись этим случаем, решили проверить взрывчатые свойства нового соединения. Удары, от которых нитроглицерин обычно взрывался, не произвели никакого эффекта. Когда же к кизельгуру пристроили взрыватель, то от детонации новый материал взорвался с оглушительной силой. Так был изобретен динамит.
Читать дальше