Стивен Вайнберг - Мечты об окончательной теории - Физика в поисках самых фундаментальных законов природы

Здесь есть возможность читать онлайн «Стивен Вайнберг - Мечты об окончательной теории - Физика в поисках самых фундаментальных законов природы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2004, ISBN: 2004, Издательство: Едиториал УРСС, Жанр: Прочая научная литература, Физика, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.
Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?
Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.
Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами. Она распахивает читателю двери в новый мир и помогает понять то, с чем он там встретится.

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, математические структуры, развиваемые учеными для реализации физических принципов, обладают странным свойством подвижности. Их можно переносить от одного концептуального окружения к другому, они могут служить разным целям. Так, лопаточные кости в теле человека играют роль соединения между крыльями и телом птицы или ластами и телом дельфина. Физические принципы приводят к красивым структурам, которые остаются жить, даже когда умирают принципы.

Возможное объяснение было предложено Нильсом Бором [110]. Рассуждая в 1922 г. о будущем своей ранней теории строения атомов, он заметил, что «в математике существует ограниченное число форм, которые нам удается использовать для описания природы, и может так случиться, что кто-нибудь обнаружит правильные формы, исходя из совершенно неверных представлений». Бор оказался совершенно прав в отношении будущего собственной теории: принципы, лежащие в ее основе, были отвергнуты, но мы до сих пор используем некоторые элементы ее языка и методы вычислений.

Именно применение чистой математики к физике дает поразительные примеры эффективности эстетических суждений. Уже давно стало общим местом утверждение, что математики руководствуются в своей работе желанием построить такой формализм, принципы которого красивы. Английский математик Г. Харди пояснял, что «математические структуры должны быть так же красивы, как те, которые используют художники или поэты. Идеи, как краски или слова, должны гармонично сочетаться друг с другом. Красота – первый тест. Уродливой математике нет места» [111]. И вот оказалось, что благоговейно разрабатывавшиеся математиками структуры, в которых они искали красоту, позднее часто становились необычайно важными для физиков.

Для иллюстрации вернемся к примеру с неевклидовой геометрией и общей теорией относительности. В течение двух тысяч лет после Евклида математики пытались выяснить, являются ли независимыми друг от друга те предположения, которые лежат в основе евклидовой геометрии. Если постулаты не независимы, если какие-то из них могут быть выведены из других, тогда лишние должны быть отброшены, что приведет к более экономной, а следовательно более красивой формулировке геометрии. Попытки разобраться в структуре евклидовой геометрии достигли пика к началу XIX в., когда «король геометров» Карл Фридрих Гаусс и другие ученые [112]разработали неевклидову геометрию, применимую для искривленного пространства определенного типа, в котором выполнены все постулаты Евклида, кроме пятого [113]. Этим было доказано, что пятый постулат Евклида действительно логически независим от остальных. Новая геометрия была построена, чтобы ответить на давний вопрос об основаниях геометрии, а совсем не для того, чтобы применять ее к реальному миру.

Затем один из величайших математиков, Георг Фридрих Бернгард Риман, развил неевклидову геометрию, обобщив ее на общую теорию искривленных пространств в двух, трех или произвольном числе измерений. Не имея никакого представления о возможных физических приложениях, математики продолжали трудиться над развитием римановой геометрии, так как она поражала своей красотой. Эта красота во многом опять была красотой неизбежности. Достаточно начать размышлять над свойствами искривленных пространств, и вы почти неизбежно придете к необходимости введения математических понятий (метрика, аффинная связность, тензор кривизны), являющихся неотъемлемыми частями римановой геометрии. Когда Эйнштейн начал развивать общую теорию относительности, он вскоре понял, что один из способов реализации его идей о симметрии между различными системами отсчета заключается в том, чтобы описать тяготение как кривизну пространства-времени. Эйнштейн поинтересовался у своего друга, математика Марселя Гроссмана, не существует ли какой-нибудь теории искривленных пространств – не просто искривленных двумерных поверхностей в обычном трехмерном евклидовом пространстве, а искривленных трехмерных и даже четырехмерных пространств? Гроссман обрадовал Эйнштейна, сказав, что такой математический формализм существует, он развит Риманом и другими математиками. Более того, Гроссман обучил Эйнштейна этой математике, которая затем вошла составной частью в общую теорию относительности. Таким образом, получается, что математика ждала появления Эйнштейна, который сумел ее использовать для физики, хотя я полагаю, что ни Гаусс, ни Риман, ни другие специалисты по дифференциальной геометрии XIX в. понятия не имели, что их работа когда-нибудь будет иметь хоть какое-то отношение к физической теории тяготения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы»

Представляем Вашему вниманию похожие книги на «Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы»

Обсуждение, отзывы о книге «Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x