В физике исторически наиболее важным примером возникновения новых качеств является термодинамика, наука о теплоте. В первоначальной формулировке, данной в XIX в. Карно, Клаузиусом и другими, термодинамика выглядела как автономная наука, не выводимая из механики частиц и сил, а построенная на новых понятиях температуры и энтропии, не имеющих аналогов в механике. Только первый закон термодинамики, закон сохранения энергии, перекидывал мостик между механикой и термодинамикой. Центральным принципом термодинамики был второй закон, согласно которому (в одной из формулировок) физические системы обладают не только энергией и температурой, но и определенной величиной, называемой энтропией [22], которая всегда растет со временем в любой замкнутой системе, достигая максимума, когда система приходит в состояние равновесия [23]. Именно этот принцип запрещает Тихому океану передать такое количество тепловой энергии Атлантическому, чтобы Тихий океан замерз, а Атлантический закипел; подобный катаклизм не нарушил бы закона сохранения энергии, но он запрещен, так как уменьшил бы энтропию.
Физики XIX в. воспринимали второй закон термодинамики как аксиому, сформулированную на основании опыта и столь же фундаментальную, как и любой другой закон природы. В те времена это казалось разумным. Термодинамика, похоже, успешно применялась в самых разнообразных ситуациях, начиная от поведения пара (та задача, которая породила саму термодинамику) и кончая замерзанием, кипением и химическими реакциями. (В наши дни мы могли бы добавить более экзотические примеры; астрономы обнаружили, что мириады звезд в шаровых скоплениях в нашей и других галактиках ведут себя как газы при определенной температуре, а в работах Бекенштейна и Хокинга было теоретически показано, что черные дыры обладают энтропией, пропорциональной площади поверхности дыры.) Если термодинамика столь универсальна, то как можно ее логически связать с физикой определенных типов частиц и сил?
Затем, во второй половине XIX в., в работах нового поколения физиков-теоретиков (включая Джеймса Клерка Максвелла в Шотландии, Людвига Больцмана в Германии и Джосайи Уилларда Гиббса в Америке) было показано, что принципы термодинамики можно на самом деле математически вывести, анализируя вероятности различных конфигураций систем определенного типа, в которых энергия распределяется среди очень большого числа подсистем. Так происходит, например, в газе, энергия которого распределяется среди образующих газ молекул. (Эрнст Нагель приводит этот пример как образец сведения одной теории к другой [24]) В рамках такой статистической механики тепловая энергия газа является просто кинетической энергией его частиц; энтропия есть мера беспорядка в системе; второй закон термодинамики выражает тенденцию изолированной системы становиться все более неупорядоченной. Переток теплоты из всех океанов в Атлантический привел бы к увеличению порядка, и именно поэтому так не происходит.
Какое-то время, в период между 1880-м и 1890-м гг., происходила настоящая битва между теми, кто поддерживал новую статистическую механику, и теми, кто, как Макс Планк и химик Вильгельм Оствальд, продолжали утверждать логическую независимость термодинамики [25]. Эрнст Цермело пошел еще дальше и пытался доказать, что, поскольку в рамках статистической механики уменьшение энтропии маловероятно, но все же возможно, то предположения о молекулах, на которых построена статистическая механика, не могут быть верными. Эта битва была в конце концов выиграна последователями статистической механики, после того как в начале ХХ в. всеми была признана реальность атомов и молекул. Тем не менее, даже получив объяснение в терминах частиц и сил, термодинамика продолжает иметь дело с такими понятиями, как температура и энтропия, теряющими всякий смысл на уровне отдельных частиц.
Термодинамика это скорее способ рассуждений, а не часть универсального физического закона; когда мы ее применяем, мы всегда можем уверенно пользоваться одними и теми же принципами. Но объяснение того, почему термодинамика применима к любой конкретной системе [26], принимает форму вывода, использующего методы статистической механики и отталкивающегося от деталей устройства системы, а это неизбежно опять приводит нас на уровень элементарных частиц. Если воспользоваться картиной стрелок объяснений, которую я уже применял выше, то термодинамику можно рассматривать как определенную систему таких стрелок, снова и снова возникающих в очень разных физических обстоятельствах, но где бы они не возникли, всегда с помощью методов статистической механики можно проследить, как они сходятся к более глубоким законам и в конце концов к принципам физики элементарных частиц. Как показывает этот пример, применимость научной теории для выяснения очень широкого круга явлений совершенно не означает автономность ее от более глубоких физических законов.
Читать дальше