Искусственный интеллект и маркетинг
Маргарита Акулич
© Маргарита Акулич, 2021
ISBN 978-5-4490-5350-3
Создано в интеллектуальной издательской системе Ridero
В книге даны основные понятия, связанные с искусственным интеллектом, его историей и развитием. Возможно, это будет интересно как маркетологам, так и не маркетологам.
Раскрыты аспекты использования искусственного интеллекта: в маркетинге, в рекламе, в поисковых системах, в мобильном маркетинге.
Приведено описание ряда примеров лучшего программного маркетингового обеспечения и технологий, основанных на искусственном интеллекте.
I Основные понятия, связанные с искусственным интеллектом, его историей и развитием
1.1 Понятие искусственного интеллекта, его история и хронология
Понятие искусственного интеллекта
Под искусственным интеллектом (artificial intelligence – AI, также машинным интеллектом, machine intelligence – MI) понимается интеллект, демонстрируемый машинами, в отличие от интеллекта естественного (NI – natural intelligence), присущего людям и животным. В области компьютерных наук исследование AI определяется как исследование «интеллектуальных агентов»: любого устройства, воспринимающего окружающую среду и принимающего меры, максимизирующие их шансы на успешное достижение своих целей.
Применение термина «искусственный интеллект» распространяется на случаи, когда машиной имитируются «когнитивные» функции, которые люди связывают с другими человеческими умами – «обучением» и «решением проблем».
Объем AI оспаривается: по мере того, как машины становятся все более способными, задачи, требующие «интеллекта», часто удаляются из списка задач, связанных с искусственным интеллектом. Например, оптическое распознавание символов часто исключается из «искусственного интеллекта», и рассматривается как обычная технология. Возможности AI обычно включают в себя:
успешное понимание человеческой речи;
конкурирование на самом высоком уровне в стратегических игровых системах (таких, как шахматы и Go);
автономные автомобили;
интеллектуальную маршрутизацию в сетях доставки контента; военное моделирование и интерпретацию сложных данных, включая изображения и видео.
Основание AI в качестве академической дисциплины произошло в 1956 году. Он испытал несколько волн оптимизма, за которым последовало разочарование и потеря финансирования (известная как «зима AI») а после к нему применялись новые подходы, он переживал успех и возобновление финансирования.
На протяжении большей части своей истории исследования AI были разделены на подполя, часто не взаимодействующие друг с другом. Эти подполя основаны на технических соображениях, таких как конкретные цели (например, «робототехника» или «машинное обучение»), использование конкретных инструментов («логика» или «нейронные сети») либо глубокие философские различия. Подполья также были основаны на социальных факторах (на отдельных учреждениях или на работе отдельных исследователей).
Традиционные проблемы (или цели) исследований AI включают в себя рассуждения, знания, планирование, обучение, обработку естественного языка, восприятие и способность двигаться и манипулировать объектами.
Общий интеллект входит в число долгосрочных целей. Подходы включают статистические методы, вычислительный интеллект и традиционный символический AI. В AI практикуется использование многих инструментов, включая версии поиска и математической оптимизации, нейронные сети и методы, основанные на статистике, теории вероятности и экономике. Поле AI опирается на информатику, математику, психологию, лингвистику, философию и др.
Поле было основано на утверждении, что человеческий интеллект может быть настолько точно описан, что машина способна его имитировать. Это поднимает философские аргументы о природе ума и этике создания искусственных существ, наделенных человекоподобным интеллектом. Некоторые люди считают AI опасностью для человечества, если он станет неослабно прогрессировать. Другие полагают, что AI, в отличие от предыдущих технологических революций, создаст риск массовой безработицы.
В двадцать первом веке методы AI испытали возрождение после одновременных успехов в компьютерной силе, больших объемах данных и теоретическом понимании; и методы AI стали неотъемлемой частью технологической отрасли, помогая решать многие сложные проблемы в информатике.
Читать дальше