• Сотрудничество бизнеса и общества: исследование и разработка искусственного интеллекта должны осуществляться не только в больших технологических компаниях. Напротив, должен существовать сильный и открытый процесс международной коммуникации и коммуникации между компаниями всех размеров, равно как и процесс коммуникации между бизнесом и обществом.
Вот лишь несколько причин, почему каждому из нас необходимо начать искать дополнительную информацию по технологиям искусственного интеллекта. В конце данной книги вы найдете список из 20 вопросов и ответов, которые раскрывают некоторые из тем, указанных выше.
Я надеюсь, что, прочитав о темах, раскрываемых в данной книге, вы не только приобретете больший интерес к искусственному интеллекту, но и станете говорить о нем более открыто и часто и, возможно, даже сами начнете работать с новыми инструментами искусственного интеллекта.
4. Информация – новая нефть?
Размышляя об искусственном интеллекте, можно задать следующие вопросы: почему искусственный интеллект так важен? Почему так много крупных технологических компаний вкладывают усилия в развитие и применение инструментов искусственного интеллекта?
С точки зрения развития одна из очевидных причин роста количества инструментов искусственного интеллекта состоит в экспоненциальном увеличении вычислительных мощностей компьютеров, что, в свою очередь, позволило компьютерам обрабатывать более сложные алгоритмы. Это те самые виды продвинутых алгоритмов, за счет которых и функционирует ИИ.
Данные являются другим важным элементом ускорения развития искусственного интеллекта. Если максимально упростить, то можно сказать, что создавать продукты и приложения с искусственным интеллектом без наличия данных практически невозможно.
В техническом сообществе есть одно очень известное высказывание: «Данные – новая нефть». Сегодня самыми важными компаниями зачастую являются те, у которых есть доступ к самым большим объемам данных. Однако в бизнесе важен не только объем данных, но и их качество.
Я все же могу возразить: данные даже лучше нефти. В те годы, когда нефть была одним из ценнейших ресурсов в мире, лишь некоторые компании имели возможность извлекать из нее выгоду. Однако теперь, когда практически любой человек может усвоить базовые знания об искусственном интеллекте и машинном обучении и использовать полученные навыки для создания ценных инструментов и когда можно с легкостью воспользоваться бесплатными онлайн-источниками информации, каждый может извлечь выгоду из данных.
Доступ к данным
В современном мире у нас есть обилие данных, которые мы можем использовать. Например, тридцать лет назад объем данных по здравоохранению, дорожному движению, финансам и другим важным областям деятельности и темам был далеко не таким большим, как сейчас, и создавать решения на базе искусственного интеллекта для решения основных проблем в этих областях было просто невозможно.
Пользуясь той же логикой, можно предположить, что технологии, которые существуют у нас сейчас, будут иметь даже большее значение спустя десять лет, поскольку появится доступ к еще большему объему данных.
Один из примеров данной концепции можно найти в наблюдении за разработкой самоуправляемых автомобилей и связанных друг с другом «умных» городов. Основным компонентом, делающим создание этих вещей возможным, является объем данных, которые можно собрать и проанализировать для увеличения производительности систем искусственного интеллекта.
Анализ данных обычно опирается на два вида информации: структурированные и неструктурированные данные. Чтобы действительно понять системы ИИ, важно знать ключевые различия между двумя типами данных.
Обычно структурированные данные используются гораздо чаще неструктурированных. Структурированные данные включают в себя простые данные, такие как числовые значения, даты, валюты или адреса. Неструктурированные данные включают в себя более сложные для анализа типы данных: текст, изображения и видео. Однако развитие инструментов искусственного интеллекта сделало возможным анализ более обширного спектра неструктурированных данных, которые затем можно использовать для создания рекомендаций и прогнозов.
Мощная аналитика даст нам возможность в будущем применять инструменты искусственного интеллекта для всего общества в целом.
Читать дальше