Давайте теперь предложим вашему другу замощение, состоящее из одинаковых рядов прямоугольников, ориентированных длинной стороной горизонтально. При повороте на 90° такое замощение будет выглядеть иначе, поскольку длинные стороны окажутся ориентированы вертикально. Однако поворот на 180° сделает его неотличимым от первоначального. Поэтому в случае прямоугольников 180° – это наименьший поворот, который является симметрией. Два таких поворота дают 360°. Так что замощение из прямоугольников обладает симметрией второго порядка.
Аналогично для параллелограммов единственный поворот, который оставляет замощение без изменений, – 180°. Поэтому замощение параллелограммами также имеет вращательную симметрию второго порядка.
Применив этот же подход к равносторонним треугольникам, мы обнаружим симметрию третьего порядка. А в случае шестиугольников – шестого.
Наконец, существует еще одна возможная вращательная симметрия, которую можно получить на основе каждого из пяти шаблонов. Например, если краям любой из используемых фигур придать неправильную форму, то единственным поворотом, оставляющим узор неизменным, будет полный оборот на 360° – или симметрия первого порядка.
И на этом список возможностей заканчивается. Симметрии первого, второго, третьего, четвертого и шестого порядка исчерпывают список симметрий, возможных для двумерных периодических замощений, – этот факт известен человечеству уже не одно тысячелетие. Древнеегипетские мастера, например, использовали вращательные симметрии для создания прекрасных мозаик. Однако лишь в XIX веке эти выработанные методом проб и ошибок приемы были в полной мере объяснены строгой математикой.
Вернемся, однако, к плиточному полу в нашей душевой. Тот факт, что ваш подрядчик не может сделать периодическое замощение с помощью одних только правильных пятиугольных плиток, не оставляя больших щелей, нарушающих гидроизоляцию, служит наглядной демонстрацией того, что симметрия пятого порядка невозможна согласно законам кристаллографии. Но это не единственная запрещенная симметрия. То же относится к симметриям седьмого, восьмого и любого другого более высокого порядка.
Не забывайте, что, согласно открытию Гаюи, кристаллы периодичны, подобно плитке на вашем полу с регулярно повторяющимся рисунком. Соответственно, те же ограничения, что применимы к замощениям, будут применимы и к трехмерным кристаллам. Лишь некоторые формы могут соединяться друг с другом, не оставляя зазоров.
Однако, несмотря на это сходство, трехмерные кристаллы намного сложнее плитки для пола, поскольку они могут иметь различные вращательные симметрии вдоль разных лучей зрения. Симметрии меняются в зависимости от точки, с которой наблюдается объект. Однако вне зависимости от направления взгляда для регулярно повторяющихся трехмерных структур и периодических кристаллов возможны только симметрии первого, второго, третьего, четвертого и шестого порядка – те же, что и для двумерных плиток. И с какой бы стороны вы ни смотрели на объект, вращательная симметрия пятого порядка всегда запрещена, так же как симметрии седьмого, восьмого и любого более высокого порядка.
Сколько различных сочетаний симметрий, наблюдаемых с разных направлений, может встретиться в периодических кристаллах? Поиск ответа на этот вопрос был серьезным испытанием для математической мысли.
Эта задача была окончательно решена в 1848 году французским физиком Огюстом Браве, который показал, что существует ровно 14 таких комбинаций. Сегодня они известны как “решетки Браве”.
Однако проблема понимания кристаллических симметрий этим не исчерпывалась. Позднее была разработана более полная математическая классификация, совмещающая вращательные симметрии с еще более сложными симметриями – “зеркальными”, “центральными” и “скользящими”. При объединении всех этих дополнительных вариантов общее число допустимых симметрий возрастает с 14 до 230. Однако даже при таком многообразии симметрия пятого порядка остается запрещенной для любых направлений.
В этих открытиях красота математики самым удивительным образом совмещается с красотой природного мира. Все эти 230 возможных трехмерных схем кристаллов [3] Строгий термин – “пространственные кристаллографические группы”.
были найдены при помощи чистой математики. И каждый из этих рисунков был обнаружен в природе при раскалывании минералов.
Читать дальше