Олег Иванов - Нематематика. Для начинающих продюсеров

Здесь есть возможность читать онлайн «Олег Иванов - Нематематика. Для начинающих продюсеров» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Прочая научная литература, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Нематематика. Для начинающих продюсеров: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Нематематика. Для начинающих продюсеров»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Этот курс для продюсеров. Он включает материал, который позволит получить некоторые знания и навыки для будущей профессии. Основу курса составляют математические модели из реальной жизни, и поэтому эта книга будет полезна не только студентам, обучающимся по специальности 55.05.07 «Продюсерство», но и более широкому кругу специалистов, включая тех, кто повышает квалификацию и получает новую профессию. Книга не является самодостаточной, к ней должны прилагаться живые аудиторные занятия с автором.

Нематематика. Для начинающих продюсеров — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Нематематика. Для начинающих продюсеров», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пересечение двух множеств представляет собой третье множество, состоящее из элементов, которые являются одновременно элементами и первого, и второго множества. Пересечение может оказаться пустым, если множества не пересекаются. Операцию пересечения двух множеств называют еще их произведением.

Разность двух множеств представляет собой множество, которое содержит элементы первого множества и не включает элементы второго. Мы вычитаем, тем самым, второе множество из первого и получаем новое множество, называемое их разностью. Можно рассмотреть также еще одну операцию – дополнения одного множества по отношению к другому. В дополнение попадают те элементы второго множества, которые не являются элементами первого.

Операции над множествами для наглядности принято изображать при помощи диаграммы Эйлера. Леонард Эйлер использовал идею изображения множеств с помощью кругов. Позже эту идею развил английский логик Джон Венн.

Между двумя множествами можно устанавливать соответствие, когда всем или некоторым элементам первого множества ставятся в соответствие какие-то элементы второго множества. При этом одному элементу первого множества, вообще говоря, может соответствовать один или несколько элементов второго, или не соответствовать ни один из элементов.

Взаимно-однозначное соответствие между множествами устанавливается в том случае, если каждому элементу первого множества устанавливается в соответствие один и только один элемент второго и наоборот. Если между между двумя конечными множествами установлено взаимно-однозначное соответствие, то это означает, что они состоят из одинакового количества элементов.

2.3. Алгебра множеств

Определив для множеств операции сложения, вычитания и умножения мы можем применять их к любому числу множеств и благодаря этому получаем новый математический объект, состоящий из всех множеств, рассматриваемых нами применительно к определенной ситуации, и действий, которые мы над ними можем совершать. Этот новый объект математики называют алгеброй, подобно алгебре чисел существует также алгебра множеств. Мы не будем останавливаться на точном математическом определении этого объекта, скажем только, что в алгебре необходимо, чтобы введенные применительно к множествам операции обладали некоторыми, совсем не сложными свойствами.

Свойство коммутативности означает, что если к первому множеству добавить второе, то результат будет такой же, как если бы ко второму множеству добавили первое. Аналогично, это свойство выполняется и для произведения двух множеств.

Свойство ассоциативности проявляется в том, что если к первому множеству добавить второе и к сумме добавить третье множество, то мы в итоге получим то же самое, как если бы мы ко второму множеству добавили третье и только потом к сумме добавили первое множество. Фактически это означает, что можно менять порядок действий со множествами. Свойство ассоциативности действует и для произведения трех множеств. Поэтому сумму и произведение множеств можно записывать без скобок.

Свойство дистрибутивности для действий со множествами проявляется в том, что если первое множество умножить на сумму второго и третьего множеств, то в итоге мы получим то же самое, как если бы первое множество мы умножили по очереди на второе и на третье и затем два полученных произведения сложили между собой. Свойство дистрибутивности означает, что производя операции сложения и умножения между множествами можно раскрывать скобки.

Для операций над множествами выполняются не все свойства, которые характерны для чисел. Например, если множество умножить на самого себя, то получим то же самое множество. Если к некоторому множеству прибавить его же, то мы получим вовсе не удвоенное, а всего лишь исходное множество. С числами результаты подобных действий выглядели бы иначе.

2.4. Нечеткие множества

Нечеткое множество является расширением понятия множества. Если для обычного множества элементы могут принадлежать или не принадлежать ему, то для нечеткого элементы могут принадлежать ему лишь в некоторой степени, скажем на 20% или на 70% – в любой мере от 0 до 100 процентов, или от 0 до 1, кому как удобнее. Нечеткие множества Понятие нечеткого множества было введено Лотфи Заде в 1965 году в его статье «Fuzzy Sets».

Основные понятия

Множество – Set

Пустое множество – Empty Set

Алгебра множеств – Algebra of Sets

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Нематематика. Для начинающих продюсеров»

Представляем Вашему вниманию похожие книги на «Нематематика. Для начинающих продюсеров» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Нематематика. Для начинающих продюсеров»

Обсуждение, отзывы о книге «Нематематика. Для начинающих продюсеров» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x