Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Здесь есть возможность читать онлайн «Александр Петров - Гравитация. От хрустальных сфер до кротовых нор» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Фрязино, Год выпуска: 2013, ISBN: 2013, Издательство: Array Литагент «Век», Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. От хрустальных сфер до кротовых нор: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. От хрустальных сфер до кротовых нор»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.

Гравитация. От хрустальных сфер до кротовых нор — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. От хрустальных сфер до кротовых нор», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Качественно проблему можно решить, представив мировую линию путешественника в виде ломаной, состоящей из двух отрезков, как показано на рис. 5.5, ускорения «скрыты» в изломах этой ломаной. Мировая линия брата-домоседа совпадает с осью времени. Сравним интервал отрезка прямой на оси времени между событиями a (расставания) и w (встречи) с суммой интервалов отрезков ломаной. Прежде всего, отметим, что наклонные отрезки ломаной линии времениподобные, поскольку описывают движение материального тела. Но тогда из наших рассуждений о сравнении интервалов на рис. 5.4 следует, что интервал каждого из наклонных отрезков меньше половины интервала отрезка aw , то есть интервал всей ломаной меньше, чем весь интервал aw. Но интервал отрезка мировой линии наблюдателя равен промежутку его собственного времени. Поэтому брат-путешественник при встрече будет моложе.

Тот же вывод можно сделать по-другому. Нанесем на наклонных мировых значения собственного времени путешественника и соединим их с точно такими же значениями для времени на мировой линии домоседа. Получим два набора параллельных линий, как на рис. 5.5, первый набор синхронизован на момент их разлуки и в будущее, второй набор синхронизован от момента встречи и в прошлое. Эти наборы параллельных линий всегда про-странственноподобны, они не имеют никакого отношения ни к световым конусам, ни к реальным наблюдателям. Очевидно, домосед проживет больше времени, см. рис 5.5. Отрезок на временной оси, не получивший своих точек-двойников на ломаной линии, определяет – насколько домосед будет старше путешественника при встрече.

Ситуация на рис. 5.5 несколько утрирована. Получается, что брат-путешественник стартовал с бесконечным ускорением, затем развернулся с бесконечным ускорением, и т. д. Реальная мировая линия брата-путешественника конечно плавная, соответствующая конечным ускорениям. Однако выводы не изменятся. Мы можем кривую аппроксимировать ломаной, причем с любой точностью. А анализ ломаной мировой линии, имеет она два отрезка, как на рис. 5.5, или любое другое количество отрезков, принципиально не отличается. Другими словами, парадокса не возникает, если не нарушаются правила вычисления интервалов. Тогда результат всегда таков: интервал отрезка aw на рис. 5.5 больше интервала, измеренного вдоль любой другой мировой линии, соединяющей события a и w . То есть собственное время домоседа всегда больше собственного времени любого путешественника из a в w .

Некоторые особенности ускоренных наблюдателей обсуждаются в Дополнении 6, которое лучше читать после главы 8 (о черных дырах).

Пуанкаре и Эйнштейн

В исторической литературе о науке много внимания уделяется взаимоотношениям создателей СТО в начале прошлого века. Иногда оценки разнятся чрезвычайно. К сожалению, часто доходят до крайностей, ничем не обоснованных. Можно было бы об этом просто не писать, но великие создатели великой теории тоже были людьми. Взаимоотношения были частью их жизни и, так или иначе, были связаны и с их творчеством.

Поскольку основными создателями СТО по праву считаются Пуанкаре и Эйнштейн, то на их взаимные отношения и отношение к ним научного сообщества обратим особое внимание. Весьма взвешанная оценка тех событий дана в послесловии (которое называется «Истоки релятивизма») в книге А. А. Тяпкина и А. С. Шабанова «Пуанкаре», вышедшей в 1979 году в серии «Жизнь замечательных людей». Поэтому, в основном, будем следовать изложению этого послесловия, иногда вставляя собственные комментарии. Но прежде, совсем немного об Анри Пуанкаре.

Математические таланты Пуанкаре проявились уже в престижной Политехнической школе. Там он опубликовал свою первую научную работу по дифференциальной геометрии. В 1875 году его приняли в еще более авторитетное заведение – Горную школу, где в 1879 году он защитил докторскую диссертацию, которая была оценена как «заслуживающая многих хороших диссертаций».

После этого Пуанкаре преподавал в нескольких университетах, иногда одновременно. Опубликовал несколько важных статей, фактически создавая новые разделы математики. Его исследования тесно связаны с небесной механикой и астрономией.

В 1887 году король Швеции Оскар II объявил математический конкурс и предложил участникам на выбор четыре темы. Самой сложной была первая: рассчитать совместное движение тел Солнечной системы. За нее и взялся Пуанкаре. Для решения этой проблемы, как минимум, необходимо было решить задачу совместного движения трех тел. Пуанкаре показал, что задача трех тел не имеет аналитического решения, но предложил эффективные методы приближенного решения. Эта работа и последовавшие за ней содержат идеи, ставшие базовыми для «теории хаоса».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. От хрустальных сфер до кротовых нор»

Представляем Вашему вниманию похожие книги на «Гравитация. От хрустальных сфер до кротовых нор» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Петров - Дочь генерала
Александр Петров
Александр Петров - Меморандум
Александр Петров
libcat.ru: книга без обложки
Александр Петров
Геннадий Ерофеев - Диггер «кротовых нор»
Геннадий Ерофеев
Александр Бакулин - Гравитация и эфир
Александр Бакулин
Александр Петров - Россия - Жизнь взаймы
Александр Петров
Александр Петров - Пленник
Александр Петров
Александр Петров - Мой дворец
Александр Петров
Александр Петров - Созерцатель
Александр Петров
Отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор»

Обсуждение, отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x