Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Здесь есть возможность читать онлайн «Александр Петров - Гравитация. От хрустальных сфер до кротовых нор» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Фрязино, Год выпуска: 2013, ISBN: 2013, Издательство: Array Литагент «Век», Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. От хрустальных сфер до кротовых нор: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. От хрустальных сфер до кротовых нор»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.

Гравитация. От хрустальных сфер до кротовых нор — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. От хрустальных сфер до кротовых нор», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

s 2= c 2 t′ 2– x′ 2– y′ 2– z′ 2= c 2 t′ 2– r′ 2.

то есть s = s’ .

В инвариантности интервала нет ничего удивительного – это лишь геометрическое свойство пространства Минковского, а не следствие каких-то принципов. Действительно, поскольку интервал – это длина в метрическом пространстве, то эта величина не зависит от способов измерения (использования той или иной координатной сетки). Замечательно другое – известные геометрические свойства псевдоевклидовых пространств оказались весьма полезными для описания СТО.

Рис 53 Переход к другой инерциальной системе на диаграмме пространства - фото 30

Рис. 5.3. Переход к другой инерциальной системе на диаграмме пространства Минковского

Эффекты сокращения длины, замедления времени, сложение скоростей в СТО являются следствием лоренц-инвариантности. Остановимся на первых двух. Рассмотрим линейку, собственная длина которой l 0– это длина в ее системе покоя. Пусть система покоя для выбранной линейка – это система K’ , которая движется относительно нас (системы K) со скоростью V . Тогда, если концы линейки имеют координаты

x 1 и x 2 , то l 0= x 2 ′ – x 1 .

Определим длину этого отрезка с точки зрения наблюдателя системы K . Для этого нужно в один и тот же (!) момент времени t определить координаты концов линейки xx 1в системе K . Тогда для нас длина линейки буде иметь величину l = x 2– x 1. Чтобы определить каждое из значений xx 1через соответствующие штрихованные координаты используем первую часть преобразований Лоренца (Б) каждый раз с одним и тем же значением t. Затем составим разницу и получим то есть для нас покоящейся системы K движущаяся линейка становится короче - фото 31, то есть для нас (покоящейся системы K ) движущаяся линейка становится короче.

Подтвердим вывод о замедлении времени. Находясь в системе K, будем отслеживать ход часов в системе K′ , которые находятся в точке x′. Для нас часы в системе K идут одинаково во всех точках, поэтому часы системы K′ можно сравнивать с любыми нашими. Не теряя общности, можно предположить, что x′ = 0 и моменты первого сравнения в обеих системах также нулевые: t 1 = t 1= 0. Вопрос в том, как начнут разниться показания в любой следующий момент сравнения t 2(а для системы K′ – t 2 ). Теперь удобнее использовать вторую часть преобразований Лоренца (А). Получаем Как видно показания часов в нашей системе K будут больше чем в K хотя в - фото 32 . Как видно, показания часов в нашей системе K будут больше, чем в K′ , хотя в обоих случаях отсчет начинался с нуля. Таким образом, движущиеся часы идут медленнее.

На этом этапе важно сделать замечание. Мы все больше убеждаемся, что пространство и время физически объединены в единое целое – пространственно-временной континуум. Действительно, и пространственные, и временные координаты участвуют в единых преобразованиях; инвариантная величина интервал построена как из временных промежутков, так и из пространственных отрезков. Несмотря на это, и пространство, и время сохраняют свою физическую сущность – протяженность и длительность. Формально это различие состоит в том, что временная часть входит в интервал со знаком « плюс », а пространственная – со знаком « минус ».

Мы уже отметили, что квадраты интервалов могут быть положительными, нулевыми и даже отрицательными. Для положительных – временная часть превосходит пространственную, и они называются времениподобными. Нулевые соответствуют распространению света и называются светоподобными ; совокупность светоподобных, представляющая распространение световых лучей из какой-либо мировой точки, образует, так называемый, световой конус в пространстве Минковского. На рис. 5.4 такой световой конус относится к началу координат и делит пространство-время на две части: внутри и вне конуса. Наконец, для отрицательных квадратов интервалов, пространственная часть превышает временную, и они называются пространственноподобными.

Для нас более интересны времениподобные интервалы. Почему? Отрезок прямой 0 A , соединяющий мировую точку внутри конуса и начало координат на рис 5.4 вполне можно интерпретировать как путь материальной частицы , движущейся прямолинейно и равномерно. Скорость ее меньше скорости света, и поэтому путь находится внутри конуса. Квадрат интервала между точкой А и началом координат s 2= c 2 t 2– 2 – положительный, и это относится ко всем мировым точкам внутри конуса, скажем A′. Наклон соответствующих отрезков пути меньше , чем у светового конуса. Если бы мы попытались интерпретировать отрезки пути с наклоном больше , чем у светового конуса, как путь материальной частицы, то нужно было бы говорить о скоростях больших скорости света. Но для материальной частицы это невозможно, мы об этом еще скажем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. От хрустальных сфер до кротовых нор»

Представляем Вашему вниманию похожие книги на «Гравитация. От хрустальных сфер до кротовых нор» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Петров - Дочь генерала
Александр Петров
Александр Петров - Меморандум
Александр Петров
libcat.ru: книга без обложки
Александр Петров
Геннадий Ерофеев - Диггер «кротовых нор»
Геннадий Ерофеев
Александр Бакулин - Гравитация и эфир
Александр Бакулин
Александр Петров - Россия - Жизнь взаймы
Александр Петров
Александр Петров - Пленник
Александр Петров
Александр Петров - Мой дворец
Александр Петров
Александр Петров - Созерцатель
Александр Петров
Отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор»

Обсуждение, отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x