4) Существуют также возражения, связанные с термодинамикой среды гравитационных частиц.
Все это вызывает значительный пессимизм в отношении теории Ле Сажа. Он усиливается успехами общей теории относительности. Тем не менее, периодически появляются новые работы, развивающие корпускулярную теорию, видимо, из-за наглядности и простоты. Возможной причиной внимания является отсутствие теории тяготения на микроуровне. Но мы к корпускулярной теории больше не вернемся.
Глава 4
От механики Ньютона до электродинамики Максвелла
Мне не стоило большого труда отыскание того, с чего следует начинать, так как я уже знал, что начинать надо с самого простого и доступного пониманию…
Рене Декарт «Рассуждении о методе»
Сейчас нам придется отвлечься от понятий, связанных непосредственно с теорией тяготения. Дело в следующем: чтобы подойти к обсуждению общей теории относительности (теории тяготения) необходимо понимать, что представляет собой ее предшественница – специальная теория относительности, не имеющая прямого отношения к описанию тяготения. Это связано с тем, что одна теория в определенном смысле «вырастает» из другой. Действительно, специальную теорию относительности можно мыслить как теорию плоского пространства-времени, в то время как общая теория относительности – это теория искривленного пространства-времени. В этой главе мы обсудим предпосылки создания специальной теории относительности, а в следующей – принципы ее построения, интерпретацию и интересные эффекты.
Протяженность и длительность. Методы измерений
Математика – мощный и универсальный метод познания природы, образец для других наук.
Рене Декарт «Начала философии»
Чтобы прийти к замечательным выводам, ставшими впоследствии законами механики, Галилей, Ньютон и многие другие ученые, экспериментируя с материальными телами на Земле и изучая движение небесных тел, должны были производить измерения. Определяли размеры тел и расстояния между ними ( протяженности ), положения тел и пройденные ими расстояния при движении. Особое место в механике занимает изучение последовательности событий, продолжительности событий ( длительности ), частоты возникновения событий. Все это осуществляется путем измерений момента каждого события по часам.
Говоря о пространственных измерениях, нельзя не вспомнить Декарта и Ферма, внесших неоценимый вклад в систематизацию этого процесса. Декарт был убежденным материалистом, а одним из главных свойств материальных вещей считал протяженность , которая может проявляться по-разному. Декарт отрицал существование пустого пространства на том основании, что везде, где есть протяженность, которую можно измерить, есть материя. Один из его тезисов: «В мире нет ничего, кроме движущейся материи различных видов. Материя состоит из элементарных частиц, локальное взаимодействие которых и производит все природные явления». Эти философские убеждения повлияли на выбор проблем, которые ему было интересно исследовать. Он стал одним из создателей аналитической геометрии, которую разрабатывал одновременно с французским математиком Пьером Ферма (1601–1665). Геометрические задачи стало возможно исследовать как алгебраические с помощью метода координат.
По мнению историков, Ферма, как математик, был более одаренным, чем Декарт. Он восхищался греками и был продолжателем их традиций. Ферма задавал положение точки на плоскости с помощью значений длин двух отрезков – абсциссы и ординаты, а кривая определялась уравнением, связывающим длины этих отрезков. Эта идея активно использовалась древними греками. Архимед, например, описывает конические сечения через их «симптомы», – пропорции, связывающие абсциссы и ординаты точек. Однако древние греки применяли лишь словесное описание пропорций, а Ферма представляет свои формулировки в виде уравнений, хотя тоже не символизированных. Это, конечно, значительно облегчает анализ проблем, но подход остается чисто геометрическим, пространственным.
Ферма изложил результаты своих исследования в трактате «Введение в изучение плоских и телесных мест». Книга была опубликована только в 1679 году, уже после его смерти, хотя в основном французские математики узнали о ее идеях и выводах значительно раньше, в 1630-х годах. Дело в том, что Ферма был юристом, и массу времени у него отнимала служба. Параллельно он занимался математикой и вел активную переписку с учеными того времени, его результаты были известны всему сообществу. Известно, что был он очень доброжелательным в своих письмах, иногда одно и то же объяснял много раз с разных позиций, не реагируя на возможно недоброжелательный тон оппонента.
Читать дальше
Конец ознакомительного отрывка
Купить книгу