Высокоэнергетическая ядерно- мезонная плазма – это новое состояние материи, в состав которой в активной зоне в мантии вблизи ядра ЧСТ за время менее 10 -23 секунды входят:
– распадающиеся ядра, образующие на мгновение промежуточный кластер плотного облака замкнутых магнитных монополей,
– всё многообразие по частоте возбуждённых и ионизированных замкнутых биполярных ядерных вихронов, образующих внутренние и внешние оболочки этих ядер (квазимезонов – гравиэлектромагнитных диполей),
– смесь в «шубе» из облака электрического эфира и дебройлевских фотонов и мезонов, связанных с ядрами,
– через мгновение-промежуток времени 10 —23 сек после взаимодействия и начала образования кластера взаимодействий, в её состав уже входит всё разнообразие микрочастиц, которые создаются движущимися и уже провзаимодействовавшими (согласно выше определённым свойствам) вихронами, в том числе и аннигиляция электронов с позитрона,
– нейтральные ядра, по типу нейтронов, но более тяжёлые,
– лёгкие заряженные ядра, или частицы, в том числе и отрицательные, например, отрицательные мюоны, образовавшиеся от распада первичных,
– более тяжелые по сравнению с первичными, образовавшиеся в результате центрально-концентрического слияния менее энергичных замкнутых ядерных вихронов (квазимезонов) вокруг внешних оболочек первичных ядер,
– сверхтяжёлые кластеры по сравнению с тяжёлыми, образованные кулоновским ионно-ядерным взаимодействием лёгких положительных и тяжёлых отрицательных ядер с образованием ядерных молекул или ядер с кластерной структурой.
Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С.В.Адаменко, при определённых условиях и в твёрдом теле.
Фото 9. Деление внешней оболочки и распад
После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов. Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов. В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты. Реакции, которые приводятся в работах А. Ф. Кладова на основе капельной модели ядра, а также в работах А. В. Вачаева, могут идти только как ядерно-ионные, т.е. ядра при распаде могут быть как положительные, так и отрицательные.
К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, т.е. на пути превращения в стабильные изотопы, путём радиоактивного распада.
Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер. Распад лёгких нейтральных ядер идёт по схеме деления внешнейоболочки на два замкнутых вихрона с образованием двух оболочек (одной внутренней и одной внешней, фото 6) волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад. Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны. Внутренние оболочки попарно нейтрализованы противоположно заряженными – фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли.
Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле.
Читать дальше