Стремление достичь максимума скорости и эффективности диктовало необходимость, прежде всего, решить проблемы, казавшиеся на первый взгляд «элементарными». Многие из этих задач уже были решены, правда, в весьма упрощенной форме, и применялись в мире простых автоматов (в лифтах, посудомоечных машинах, даже на нефтеперерабатывающих предприятиях и в самолетах), в медицинской диагностике, в игрушках и других ограниченных областях исследований или взаимодействий: бронирование билетов, проверка орфографии и даже грамматики и тому подобное. Мы вполне можем считать эти устройства дальними родственниками строжайше засекреченных и изолированных систем, созданных Гровсом и его элитарной командой интеллектуальных творцов. Они придерживались принципа Достаточного Знания и полагались на понимание проектировщиков, способных создать системы из подсистем, заранее снабженных ровно теми компетенциями, которые могут им понадобиться для обеспечения результата и решения проблем, с которым им придется столкнуться. Несмотря на всю свою гениальность, первые разработчики ИИ не были всемогущими (а времени у них было не так много), поэтому они ограничили диапазон и разнообразие исходных данных, которые могла обработать каждая из подсистем, и создали программы, способные лишь охранять тысячи разных мастерских, чтобы защитить дурковатых гениев (подпрограммы), трудившихся в них.
Они узнали много, не известного ранее, усовершенствовали старые и придумали новые методы и технологии, но, прежде всего, они позволили понять, насколько трудна и драматична была задача по созданию свободного, творческого, открытого новому человеческого разума. Мечта о закодированном по собственному разумению, организованном и подчиняющемся командам, эффективном бюрократе и всезнайке, ходячей (или хотя бы разговаривающей) энциклопедии если еще и не полностью отброшена, однако, по мере того как размеры задачи представали в своей реальной огромности, внимание постепенно смещалось в сторону разработки разных стратегий: технологий обработки больших баз данных Big Data [63] Большие данные (англ. big data) – обозначение структурированных и неструктурированных данных очень большого объема, характеризующихся значительным многообразием.
, статистических методов поиска паттернов анализа и интеллектуальной обработки данных, т. н. data mining [64] Data mining – собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности.
с использованием методов машинного обучения, направленных на получение нужной информации на основе восходящего способа.
Я должен буду в дальнейшем рассказать об этих усовершенствованиях подробнее; в настоящий момент уже можно признать, что существенное увеличение скорости и размеров компьютеров открыло возможности для внедрения более «расточительных», «бессмысленных», менее «бюрократических», более похожих на эволюционные подходы процессов обработки информации, и в этих направлениях уже достигнуты впечатляющие результаты. Благодаря этим новым перспективам мы можем уже обдумывать даже в некоторых деталях, каким образом относительно простые системы, контролирующие бактерий, червяков, термитов, к примеру, смогли эволюционировать в результате восходящих, случайных, жестких и грубых процессов естественного отбора. Другими словами, мы хотели бы понять, как эволюция умудряется играть роль Лесли Гровса и организовывать невежественные силы в эффективные команды, в отсутствие Гровсовских познаний и предвидений.
Нисходящее интеллектуальное созидание работает. Опережающее планирование, обсуждение проблем, корректировка задач и четкое понимание причин каждого шага – эта стратегия демонстрировала эффективность в трудах изобретателей и реформаторов на протяжении тысячелетий; она доказала эффективность через бесчисленные победы изобретательности и предвидения во всех областях человеческой деятельности, начиная с науки и инженерного дела, и заканчивая политическими кампаниями, кулинарией, сельским хозяйством и мореплаванием. До открытий Дарвина люди были уверены, что существует только один способ созидания: созидание без разумного творца считалось невозможным. Однако нисходящий путь созидания на самом деле приложил руку к гораздо меньшему количеству вещей в нашем мире, чем принято считать, и некоторые «творения» – процитируем в очередной раз Беверли – не имеют к нему никакого отношения. «Странная инверсия причинности» Дарвина и не менее революционная инверсия Тьюринга были двумя сторонами одного и того же открытия: существования «компетентности без понимания», «умения без разумения». Разумность, понимание – это вовсе не божественный дар, который должен сопровождать любое созидание; это результат взаимодействия систем, лишенных разума, но способных действовать: естественный отбор с одной стороны, бездумные вычисления – с другой. Эти две теории были полностью доказаны и не подлежат никаким сомнениям, однако до сих пор вызывают смятение и недоверие у некоторых людей. Я постарался переубедить их в этой главе. Креационисты не найдут ни в одном из живых организмов программный код с комментариями, а картезианцы не обнаружат нематериальный res cogitans, «в котором сконцентрировано все знание».
Читать дальше
Конец ознакомительного отрывка
Купить книгу