умами и сознанием жертв: ссылки на придуманных монстров см.: Yong (2017). В 2018 году исследователи в японском Университете Рюкю обнаружили, что некоторые виды цикад «приручили» кордицепсы ( Ophiocordyceps ), живущие в их телах (Matsuura et al. [2018]). Как и многие другие насекомые, питающиеся в основном соком, цикады зависят в своем выживании от бактерий, находящихся с ними в симбиозе и вырабатывающих определенные необходимые для жизни витамины и питательные вещества. Но у ряда японских видов цикад этих бактерий заменили определенные виды гриба кордицепса. Это было самое невероятное из того, что могло произойти. Кордицепсы – жестокие и умелые убийцы, оттачивавшие свои способности десятками миллионов лет. И все же в течение их долгой совместной жизненной истории кордицепсы стали незаменимыми партнерами в жизни цикад. Более того, такое происходило по крайней мере трижды внутри трех родов цикад. Прирученные грибки кордицепсы служат напоминанием о том, что грань между «полезными» и «паразитирующими» микроорганизмами не всегда четкая.
секретное средство для сохранения вечной молодости: об иммуноподавляющих лекарственных препаратах читайте в State of the World’s Fungi (2018), “Useful Fungi”; о панацее для сохранения вечной молодости см.: Adachi & Chiba (2007).
своими жертвами-насекомыми: Coyle et al. (2018); об «убойном» открытии читайте на сайте twitter.com/mbeisen/status/1019655132940627969 [дата обращения 29 октября 2019].
центральная нервная система остается невредимой: описание поведения зараженных мух см.: Hughes et al. (2016) и Cooley et al. (2018); о «летающих солонках смерти» (“flying saltshakers of death”) см.: Yong (2018).
совершенно иной истории: об исследовании Кассона (Kasson) см.: Boyce et al. (2019), c дискуссией можно познакомиться в работе Yong (2018). Это не первое сообщение о том, что грибы – манипуляторы насекомыми могут использовать химические вещества, способные также менять человеческое сознание, для контролирования своих жертв; во время некоторых туземных церемоний в Мексике грибы, близкородственные кордицепсу, едят вместе с псилоцибиновыми грибами (Guzmán et al. [1998]).
Но как именно – неизвестно: катинон, в соответствии с научными изысканиями, увеличивает агрессию у муравьев и, возможно, является причиной гиперактивного поведения, наблюдаемого у инфицированных цикад (Boyce et al. [2019]).
когда охотятся на лосей: см.: Ovid (1958), p. 186; о шаманизме среди племен Амазонии см.: Viveiros de Castro (2004); о юкагирах см.: Willerslev (2007).
« гриб, переодетый муравьем»: см.: Hughes et al. (2016). Нейромикробиология – относительно новая область, и осознание влияния кишечных микроорганизмов на поведение, восприятие и психологические состояния животных все еще остается фрагментарным (Hooks et al. [2018]). Тем не менее определенные тенденции начинают уже проявляться. Мышам, например, в первую очередь необходима здоровая кишечная микрофлора для формирования функциональной нервной системы (Bruce-Keller et al. [2018]). Если вывести из строя микробиомы молодых мышей до того, как у них успела сложиться функциональная нервная система, у них разовьются когнитивные отклонения, такие как проблемы с памятью и сложности с узнаванием предметов (de la Fuente-Nunez et al. [2017]). Наиболее впечатляющие результаты были получены во время исследования, где между видами мышей проводился взаимный обмен микробиотой. Когда разновидности «робких» мышей вводят фекальные трансплантаты «нормальных» мышей, они теряют осторожность. Аналогичным образом, если «нормальным» разновидностям мышей ввести кишечные микроорганизмы «робких» мышей, они становятся «чрезмерно осторожными и нерешительными» (Bruce-Keller et al. [2018]). Различия в кишечной микробиоте у мышей влияют на их способность забывать испытанную боль (Pennisi [2019b] и Chu et al. [2019]). Многие кишечные микробы вырабатывают химические вещества, влияющие на работу центральной нервной системы, включая нейротрансмиттеры и короткоцепочечные жирные кислоты. Более 90 % серотонина – нейротрансмиттера, обилие которого вызывает чувство радости и счастья, а недостаток – чувство подавленности – производится в кишечнике, и кишечные микробы играют главную роль в регулировании его производства (Yano et al. 2015). В двух научно-исследовательских работах изучались результаты подсадки фекальной микробиоты страдающих депрессией пациентов здоровым мышам и крысам. У животных появились симптомы подавленности, включая и тревожность, и потерю интереса к приятным, доставляющим удовольствие занятиям. Эти работы позволяют предположить, что дисбаланс кишечной микробиоты (микрофлоры) не только может привести к депрессии, но и что один и тот же дисбаланс может служить причиной подавленного состояния как у человека, так и у мышей (Zheng et al. [2016] и Kelly et al. [2016]). Дальнейшие исследования, проводившиеся на людях, продемонстрировали, что лечение определенными пробиотиками может уменьшить симптомы депрессии, тревожность, и появление негативных мыслей (Mohajeri et al. [2018] и Valles-Colomer et al. [2019]). Тем не менее за развитием области нейромикробиологии внимательно наблюдает индустрия, вкладывающая миллиарды в производство пробиотиков, и ряд исследователей указывает на тенденцию сильного переоценивания значимости определенных научных результатов. Кишечные сообщества микроорганизмов очень сложны, и манипулировать ими – очень трудная задача. При таком количестве переменных только немногим ученым удалось выявить причинные связи между воздействием конкретных микробов и конкретным поведением (Hooks et al [2018]).
Читать дальше
Конец ознакомительного отрывка
Купить книгу