Из уравнений (2.11) и (A.10) можно получить обобщение уравнения (2.26) для ΛCDM-модели
В релятивистской космологии значение 1 – Ωm – ΩΛ обозначается Ωk и пропорционально пространственной кривизне Вселенной, взятой с обратным знаком. Ее абсолютная величина уменьшается при q < 0. В результате при ускоренном расширении Вселенной она становится все более плоской. Мы уже имели дело с аналогичной ситуацией сразу же после Большого взрыва во время инфляционного расширения Вселенной, которое мы обсуждали в разделе 3.6.
Астрономические наблюдения дают информацию о том, что наша Вселенная является практически плоской и
Главное свидетельство малой кривизны пространства – это расположение основного максимума в спектре на рис. 3.2, который называется акустическим пиком. При положительной или отрицательной кривизне Вселенной он сдвигается влево или вправо. Плоскостность объясняется теорией инфляции. В эпоху инфляции любые отклонения от плоскостности быстро уменьшались, поэтому в настоящее время выполняется условие (A.13). В результате космологи используют две версии ΛCDM-модели. В первой из них мы используем плоскую модель с
Это условие выполняется постоянно. Другими словами, сумма плотностей материи и материи, имитирующей космологическую постоянную, всегда равна критической плотности. Этот случай соответствует А = 0 в уравнениях (A.10), (A.11).
Вторая версия допускает некоторое незначительное отклонение от плоскостности Вселенной, которое возрастало с течением времени во время расширения с замедлением. В этом случае сумма плотностей материи и космологической постоянной почти равна критической. Естественно, это справедливо лишь с конца космологической инфляции. Инфляция обеспечила прекрасную тонкую настройку параметров плотности, удовлетворяющих условию (A.13) даже через миллиарды лет после ее окончания. Ограничение (A.13) выполняется в настоящее время и будет справедливо всегда из-за ускоренного расширения.
В плоской Вселенной параметр А в уравнениях (A.10) и (A.12) равен нулю. В почти плоской Вселенной все члены с этим параметром дают очень малые вклады в правые части соответствующих уравнений и могут быть отброшены, в результате чего мы получаем плоскую ΛCDM-модель. Она прекрасно описывает эволюцию Вселенной после завершения инфляционного периода.
Нам нужны значения только двух космологических параметров, полученных из наблюдений, а именно – текущее значение параметра плотности Ωm (значение ΩΛ мы находим из условия (А.14)) и параметр Хаббла H0. С их помощью из уравнения (А.10) мы получаем закон изменения со временем постоянной Хаббла
Здесь a0 – это текущий масштабный фактор (часто принимаемый равным единице), а a – зависящий от времени масштабный фактор. Закон (А.15) описывает как прошлое, так и будущее Вселенной. Для эволюции в прошлом мы можем использовать красное смещение z = a0/a – 1. Уравнение (А.15), как и ожидалось, дает текущее значение постоянной Хаббла, равное H0. Значение постоянной Хаббла непрерывно уменьшается:
На рис. А.1 показана эволюция отношения постоянной Хаббла к параметру Хаббла в зависимости от относительного масштабного фактора.
Как насчет ускоренного расширения? Напомним, что ускорение расширения не означает, что постоянная Хаббла увеличивается. Например, в модели де Ситтера она постоянна, а q < 0. Параметр торможения q определяется по формуле (2.23). Мы можем получить формулу
В современную эпоху z = 0 она превращается в уравнение (А.9). На рис. А.2 построен график этой функции для полученных астрономами значений Ωm0 = 0,31, ΩΛ0 = 0,69. Мы видим, что после окончания инфляции параметр замедления был равен 0,5 и уменьшался. Он исчез при a/a0 = (Ωm0/2ΩΛ0)1/3 ≈ 0,608, когда масштабный фактор составлял около 61 % от текущего. Это соответствует красному смещению z ≈ 0,645. Самая дальняя из известных сверхновых старше, чем переход от замедления к ускорению, так что она взорвалась еще во Вселенной, расширяющейся с замедлением. В будущем Вселенная продолжит ускоренно расширяться и ее параметр замедления будет уменьшаться, стремясь к –1.
Читать дальше
Конец ознакомительного отрывка
Купить книгу