Одна из них — это предположение, что уравнение Шредингера все-таки не совсем точно отражает реальность и в нем должны присутствовать слагаемые, которые не инвариантны относительно замены знака времени.
По этому пути, по существу, идут Пригожин и его последователи. Но могут быть предложены и другие идеи. Об одной из них я расскажу позднее.
Небезынтересна судьба редукционизма в биологии. В прошлом веке, в особенности в его начале, казалось аксиомой утверждение о некой жизненной силе, присущей всему живому, о невозможности объяснить процессы, протекающие в живом веществе, только одними законами физики и химии. Это течение мысли получило название витализма. Однако оно довольно быстро стало размываться. Многие факты начали получать свое относительно простое объяснение, например, явлением наследственности, и они не требовали привлечения, казалось бы, потусторонних соображений о существовании некой жизненной силы. Поэтому влияние редукционизма весьма глубоко проникло и в различные области естествознания.
Бертран Рассел, кажется, сказал однажды, что, как это ни удивительно, но все свойства живого вещества можно будет предсказать однажды, ибо они однозначно определяются особенностями электронных оболочек атомов, в него входящих.
Конечно, такая точка зрения весьма упрощена, если угодно, рафинирована. Но ей трудно отказать в привлекательности, и, что, может быть, еще важнее, она дает указание о направлениях возможных исследований. И в той или иной степени ей следуют многочисленные работы выдающихся ученых. Уже упомянутые мной работы М. Эйгена, посвященные изучению эволюции биологических макромолекул, относятся к числу тех исследований, в которых делается попытка объяснить процессы, протекающие в живом организме, законами физики и химии.
Вместе с тем найдется не так много биологов, которые готовы принять безоговорочно основной постулат редукционизма, смысл которого состоит в том, что никаких неожиданностей, никаких новых свойств макроуровня, не выводимых из свойств микроуровня, не существует. Другими словами, свойства системы однозначно определяются свойствами ее элементов и структурой их связей. Если этот процесс в таком крайнем виде неприемлем для биолога, то он тем более не может быть принят науками об обществе.
Я думаю, что существует некоторая общая проблема, актуальная для любых уровней организации материи. Я ее называю «проблемой сборки», или, может быть, точнее, «проблемой механизмов сборки». При объединении элементов, то есть при переходе к макроуровню, происходит образование новой структуры, обладающей своими специфическими качествами.
Кое-что об этих алгоритмах сборки мы уже знаем. Один такой пример нам дает изучение движения того же вязкого газа, о чем мы только что говорили. Если мы знаем механизм соударения молекул и если газ достаточно плотный, то есть если длина свободного пробега молекул достаточно мала, то мы, в принципе, владеем алгоритмом сборки: мы можем определить температуру, плотность, давление и другие характеристики системы «движущийся газ», которые не имеют смысла для произвольной совокупности молекул. Приведенный пример относительно прост, ибо мы знаем, как получаются общие свойства системы из свойств ее элементов.
Более сложный пример, хотя тоже еще относительно простой, нам дает кристаллография. Кристаллизация вещества — это один из примеров «сборки системы». В конце прошлого века Е. С. Федоров установил так называемый закон Федорова. Ему удалось перечислить все возможные формы (286) кристаллических структур. Оказалось, что, какое бы ни было вещество, способное к кристаллизации, будь то поваренная соль или алмаз, оно может принять лишь одну из перечисленных возможных форм.
Этот пример — тоже относительно простая иллюстрация возможных алгоритмов сборки, поскольку форма равновесия кристалла является в конечном счете следствием закона минимума потенциальной энергии. Однако здесь уже есть одна принципиальная трудность. Далеко не всегда мы можем предсказать финальное состояние процесса сборки. Как и в случае механизмов бифуркационного типа, оно определяется не только внешними условиями, но и неконтролируемыми случайными флюктуациями и внешними воздействиями.
Эти и многие подобные примеры действительно просты, ибо свойства системы могут быть установлены заранее — они определяются известными законами физики и химии (с учетом случайных флюктуаций, конечно).
Читать дальше
Конец ознакомительного отрывка
Купить книгу