То, что выглядит как гравитация в общей теории относительности Эйнштейна, на самом деле просто однородное движение сквозь искривленное пространство. Гравитации нет, поэтому гравитационная масса фиктивна, а совпадение, которое стоит за принципом эквивалентности, пропадает. Но если гравитацию нужно поместить в один квантовый «загон» вместе с другими силами, то гравитации нужно дать что-нибудь, на что она могла бы опереться – так же, как электромагнетизм опирается на электрический заряд. Возникает необходимость в гравитационной массе, которая отдельна и отлична от инертной массы.
Интервью: теория всего не дает ответов на все вопросы
«Мы не должны быть одержимы идеей поисков теории всего», утверждает Лиза Рэндалл, профессор физики Гарвардского университета.
Не мечтает ли каждый физик о единой стройной теории всего?
На свете очень много физиков! Когда я провожу свои исследования, я вовсе не думаю об этой теории. И даже если бы у нас была окончательная теория, лежащая в основе всего, как вы объясните тот факт, что мы с вами сейчас находимся здесь? Решение проблемы теории струн не объяснит нам, как возникло человечество.
Следовательно, теория всего – это миф?
Нет, это вовсе не ошибочная идея. Такие цели вдохновляют прогресс. Я просто думаю, что идея, к которой мы придем в конце концов, будет немного сложнее.
Разве не красота математики приводит нас к истине?
Вам следует быть осторожным, если вы хотите использовать красоту в качестве гида. Очень много теорий, которые вначале не считались красивыми, но оказались таковыми позже, и наоборот. Я думаю, что простота – хороший путеводитель. Чем экономичнее теория, тем она лучше.
Значит, проблема в том, что наши лучшие теории физики элементарных частиц и космологии так запутаны?
Мы пытаемся описать Вселенную в масштабах от 10 27до 10 35метров, поэтому нет ничего удивительного, что в этих теориях так много составляющих. Глупо считать, что все вокруг нас состоит только из того вещества, из которого мы сделаны. Скорее всего, без темной материи и без темной энергии нам не обойтись.
Глубже и точнее
Один из способов опровергнуть принцип эквивалентности Эйнштейна – попытаться доказать, что две массы на самом деле не эквивалентны, а просто очень-очень близки. Даже мельчайшая разница между ними будет означать, что общая теория относительности построена на зыбкой основе и что должна существовать более глубокая и точная теория.
До сих пор эксперименты, проводимые с атомами рубидия и калия в свободном падении в «Башне падения» Бременского университета, не показали отклонений от принципа эквивалентности. Было найдено, что атомы падают с одинаковыми скоростями с точностью до 11-го знака после запятой. Между тем в Вашингтонском университете в Сиэтле Эрик Адельбергер и его группа Йот-Вош ( Eöt-Wash ) используют высокотехнологичную установку – торсионные весы, чтобы сравнить движения стандартных масс, сделанных из различных элементов, включая медь, бериллий, алюминий и кремний. Они установили рекорд точности в своих экспериментах: принцип эквивалентности не нарушался с точностью до 13-го знака после запятой. Запущенный французскими учеными в апреле 2016 года космический аппарат MICROSCOPE ( Micro-Satellite a traînée Compensée pour l’Observation du Principe d’Equivalence ) тестирует движения платиновой и иридиевой масс в условиях микрогравитации в космическом пространстве.
В то же время теоретики решили потянуть за другую веревочку. Они заявили, что никто до сих пор не сумел убедительно объяснить, что такое инерция. Одно мы знаем наверняка: инерцию нельзя полностью объяснить полем Хиггса. Хотя поле Хиггса предположительно обеспечивает массами фундаментальные частицы, такие как электроны и кварки, при объединении кварков в более тяжелые частицы, а именно протоны и нейтроны, которые составляют большую часть нормального вещества, получается масса примерно в тысячу раз больше суммарной массы составляющих кварков. Эта дополнительная масса обеспечивается не механизмом Хиггса, а энергией, требуемой для того, чтобы удерживать кварки рядом друг с другом. Каким-то образом эти два эффекта должны объединиться и найти себе точку опоры, чтобы создать у тела свойство сопротивляться ускорению.
Ускоряющийся наблюдатель
И что же далее? Наверное, все это можно соотнести с феноменом, о котором в 1970-е годы заявили канадский физик Уильям Унру и другие ученые. Объединив идеи относительности и квантовой механики, они пришли к выводу, что наблюдатель, движущийся с ускорением, должен видеть излучение, исходящее из вакуума.
Читать дальше