Если темная материя на самом деле состоит из слабо взаимодействующих массивных частиц, похожих на частицы, предсказываемые теорией суперсимметрии, успех не за горами. С другой стороны, если за ближайшие 10 лет не удастся обнаружить подобные сигналы, то ученым придется расстаться со своими гипотезами о темной материи и создавать новые. Возможно, темная материя полностью инертна и вообще не взаимодействует с обычным веществом. Если это так, ее никогда не удастся обнаружить, какие бы эксперименты ни придумывали физики. Такой исход – самый большой кошмар для всех охотников за темной материей.
Интервью: поиски «луча» темного света
Есть ли у темной материи свои собственные «темные силы»? Единственный способ найти их – объявить на них охоту, говорит Тим Нельсон, физик из Национальной ускорительной лаборатории SLAC (Stanford Linear Accelerator Center) в Менло-Парк (штат Калифорния, США).
Почему вы думаете, что существует пятая сила?
Мы хорошо знаем о четырех фундаментальных силах в физике, ответственных за гравитационное, электромагнитное, сильное ядерное и слабое ядерное взаимодействие. Но по-прежнему существует шанс, что есть еще одна сила, которую мы пока еще не замечаем, возможно, потому, что она слишком слабая. Долгое время ученые стремились найти эту новую силу. В настоящее время основной целью является поиск таких сил, которые действуют в основном на темную материю. Я вдохновлен такой идеей: точно таким же образом, как нормальная материя состоит из частиц, на которые действуют различные силы, темная материя представляет собой самую легкую и наиболее стабильную составляющую еще не открытого «темного сектора» частиц и сил.
Каковы причины полагать, что этот темный сектор существует?
У нас все больше оснований так считать. Мы знаем, что темная материя существует и что она взаимодействует гравитационно – иными словами, обладает массой – и что значительное количество ее воплощено в частицах особого типа. Ученые ухватились за идею, что темная материя в основном состоит из частиц, называемых слабо взаимодействующими массивными частицами. Но поиски этих частиц, например с помощью подземных детекторов и Большого адронного коллайдера, ни к чему не привели, и мы покидаем те апартаменты, где мы могли бы их обнаружить. Тогда, если темная материя – это не просто слабо взаимодействующие массивные частицы, то остается вероятность того, что это различные типы темных частиц, взаимодействующих друг с другом с помощью особого набора своих собственных сил.
Означает ли это, что темная материя может быть весьма разнородной?
Да. Стандартная модель физики элементарных частиц оперирует со множеством частиц, включая фотон, который является переносчиком электромагнитного взаимодействия. Эта обычная материя составляет только одну шестую часть всего вещества во Вселенной. Все остальное – темная материя, так почему бы ей не быть разнородной? Если вы откроете эту концептуальную дверь, перед вами откроются врата новых возможностей. Но с чего-то надо начинать, и давайте рассмотрим самый простой на данный момент вариант: «темная сила» аналогична электромагнетизму. Отсюда появляется термин «темные фотоны».
И как вы собираетесь охотиться за темными фотонами?
Согласно теории темные фотоны смешиваются с обычными фотонами в процессе, который называется кинетическим смешиванием. Это означает, что темный фотон может превратиться в обычный, и наоборот. Но, скорее всего, это происходит очень-очень редко. Итак, в принципе, если вы проводите эксперимент, в котором выделяется много высокоэнергетических фотонов, вы также получите некоторое незначительное количество темных фотонов.
Как можно выделить темные фотоны?
Темные фотоны не могут быть безмассовыми, как обычные. Если бы они были безмассовыми, это противоречило бы нашему пониманию того, как ведет себя темная материя. Фактически они могут иметь массы в широком диапазоне. Это означает, что хотя мы и не можем непосредственно увидеть темные фотоны, мы можем охотиться за ними так же, как и за всеми частицами, которые имеют массу.
Вы уже работаете над этим?
Да, в нашем эксперименте «Поиск тяжелых фотонов» в лаборатории Джефферсона (Thomas Jefferson National Accelerator Facility) мы используем пучок электронов с высокой энергией, облучая им вольфрамовую фольгу. Когда электроны внезапно сталкиваются с препятствием, мы получаем тормозное излучение. Тормозное излучение – это в основном поток фотонов, и, если темные фотоны существуют, они также будут присутствовать в этом излучении, но в гораздо меньшем количестве. Что случится потом, зависит от того, являются ли темные фотоны самыми легкими частицами «темного сектора». Наш эксперимент предполагает, что это так и есть, а это означает, что они должны распадаться в результате кинетического смешивания с образованием частиц обычной материи, таких как электрон-позитронные пары. А их мы можем обнаружить.
Читать дальше