Из этого изображения можно сделать два вывода. Во-первых, оно наглядно показывает, каков был реальный физический масштаб горячих и холодных пятен в небе, которые увидел BOOMERanG, причем передний план дается для сравнения. Но еще оно иллюстрирует другое важное обстоятельство – то, что можно назвать нашей космической близорукостью. Если в солнечный день взглянуть в небо, увидишь ясное голубое небо, как на первой фотографии с аэростатом. Но это только потому, что в результате эволюции мы различаем только видимый свет. Несомненно, мы пошли именно таким эволюционным путем потому, что излучение поверхности нашего Солнца имеет максимум именно в видимом диапазоне, а еще потому, что излучение во многих других диапазонах поглощается нашей атмосферой и попросту не доходит до земной поверхности (к счастью для нас, поскольку подобное излучение по большей части смертоносно). Так или иначе если бы в результате эволюции мы видели микроволновое излучение, то вид неба и днем и ночью – если не смотреть прямо на Солнце – непосредственно являл бы поверхность последнего рассеяния, от которой до нас более 13 млрд световых лет. Именно это изображение и показал нам детектор установки BOOMERanG.
Первый полет аэростата BOOMERanG, в результате которого была получена эта картинка, оказался на удивление удачным. Однако природа Антарктики негостеприимна и непредсказуема. В другом запуске в 2003 г. все экспериментальное оборудование едва не было утрачено: сначала аэростат оказался неисправен, потом разыгралась буря. Положение спасло лишь решение, принятое в последний момент: отделить аппаратуру от аэростата, который тут же унесло в неизвестном направлении. Спасательная партия разыскала установку в антарктической пустыне и забрала герметичный контейнер с научными данными.
Прежде чем приступить к интерпретации изображения с зонда BOOMERanG, еще раз подчеркну, что реальные физические размеры горячих и холодных пятен, наблюдаемых в этом эксперименте, однозначно определяются простыми расчетами свойств поверхности последнего рассеяния, а измеренные размеры горячих и холодных пятен определяются геометрией Вселенной. Объяснить эксперимент поможет простая двумерная аналогия: в двух измерениях замкнутая геометрия напоминает поверхность сферы, а открытая геометрия – поверхность седла. Если мы начертим на таких поверхностях треугольник, то пронаблюдаем тот самый эффект, который я описал выше: на сфере прямые сойдутся, на седле – разойдутся, а на плоскости, само собой, останутся прямыми.
А теперь вопрос на миллион долларов: какой же размер в действительности имеют холодные и горячие пятна на изображении с зонда BOOMERanG? Чтобы дать ответ на этот вопрос, рабочая группа эксперимента подготовила на компьютере несколько модельных изображений холодных и горячих пятен, какими они должны были выглядеть в случае замкнутой, плоской и открытой Вселенной, и сравнила их с реальным изображением микроволнового неба (цвета на приведенных здесь изображениях показывают интенсивность реликтового излучения).
Рассмотрим изображение внизу слева. Это модель замкнутой Вселенной: видно, что в среднем пятна больше, чем в реальной Вселенной. Справа пятна в среднем меньше. А вот картинка посередине, соответствующая плоской Вселенной, прямо как кроватка Мишутки из сказки про трех медведей, как раз впору. Похоже, это наблюдение доказывает, что верна самая математически красивая модель Вселенной, на которую и рассчитывали теоретики, хотя она явно противоречит оценке, сделанной на основании массы галактических скоплений.
В сущности, модель плоской Вселенной и изображение, полученное зондом BOOMERanG, совпадают так точно, что становится прямо неловко. Изучив пятна и выявив самые крупные, у которых хватило времени в значительной мере сколлапсировать к тому моменту, который соответствует поверхности последнего рассеяния, рабочая группа эксперимента BOOMERanG построила следующий график.
Точки – это данные. Сплошная линия дает предсказание для плоской Вселенной – и пик приходится примерно на 1°!
Читать дальше