E = mc 2,
где с – скорость света. Это означает, что, так как скорость света огромна, то небольшой массы достаточно, чтобы произвести очень большое количество энергии. Если бы мы в изобилии располагали антиматерией (которой у нас совсем нет), то построить электростанцию со 100-процентной эффективностью было бы совсем просто: просто подливая по чайной ложке антиматерию в бак с водой, мы высвобождали бы каждый раз столько же энергии, сколько высвобождает взрыв 200 тысяч тонн тротила или более или менее типичной водородной бомбы, чего вполне достаточно на 7 минут для всей планеты.
Рис. 6.3
Более совершенные технологии позволят извлекать из вещества существенно больше энергии, чем мы можем получить перевариванием пищи или сжиганием топлива, и даже водородный синтез позволяет извлечь лишь небольшую часть энергии – в 140 раз меньше, чем допустимо с точки зрения законов физики. Силовые станции, использующие сфалероны, квазары или испаряющиеся черные дыры, позволяют существенно улучшить энергоотдачу.
В отличие от этого любой из способов получения энергии, применяемых нами сейчас, прискорбно неэффективен, о чем можно судить по данным табл. 6.1 и рис. 6.3. Переваривание шоколадного батончика эффективно всего на 0,00000001 % – в том смысле, что при этом высвобождается лишь одна триллионная часть от mc 2 – содержащейся в нем энергии. Будь ваш желудок эффективен хотя бы на 0,001 %, одного обеда вам бы хватило до конца жизни. По сравнению с тем, как мы едим, сжигание угля или бензина всего лишь в 3 и 5 раз эффективнее соответственно. Современный атомный реактор, расщепляя ядра урана, производит энергию гораздо продуктивнее, но и он пока не может добыть больше 0,08 % от той, что там есть. Термоядерный реактор в ядре Солнца на порядок более эффективен, чем все, что мы построили, – он добывает 0,7 % содержащейся в ядрах водорода энергии за счет слияния их друг с другом и превращения в ядра гелия. И даже если мы когда-нибудь заключим Солнце в идеальную сферу Дайсона, мы никогда не сможем превратить в полезную для нас энергию больше 0,08 % его массы, потому что как только Солнце израсходует примерно одну десятую содержащегося в нем водорода, оно завершит свою жизнь нормальной звезды и разрастется в красного гиганта, а потом начнет медленно умирать. И для других звезд дела обстоят не лучше: доля водорода, который им удастся израсходовать за время своей нормальной жизни, колеблется от 4 % для самых маленьких звезд до 12 % – для самых больших. Если мы сделаем совершенный ядерный реактор, который будет на 100 % синтезировать весь попадающий в него водород в гелий, мы и в этом случае застрянем на обидно низком показателе в 0,7 % эффективности ядерного синтеза. Что бы такое придумать получше?
Испарение черных дыр
В своей книге A Brief History of Time [39] См.: Хокинг С. Краткая история времени: от Большого взрыва до чёрных дыр / пер. с англ. Н. Я. Смородинская. СПб.: “Амфора”, 2001. – Прим. перев.
Стивен Хокинг описал электростанцию, работающую на черных дырах [40] Если поблизости в космическом пространстве не окажется никакой подходящей черной дыры, созданной самой природой, ее можно создать самим, засунув очень много материи в какое-нибудь достаточно маленькое место.
. Это, возможно, звучит парадоксом, если вспомнить, что в черной дыре, как считалось долгое время, все, однажды туда попавшее, застревает навеки, и даже свет не может ее покинуть. Однако, как известно, Хокинг сумел рассчитать квантово-гравитационный эффект, благодаря которому черная дыра ведет себя как горячее тело, – причем чем меньше, тем горячее. Это излучение так и стали называть излучением Хокинга . Излучая, черная дыра теряет свою энергию, пока не испарится совсем. Другими словами, какое бы вещество вы ни засунули внутрь черной дыры, оно со временем вылезет обратно в виде теплового излучения, и к тому моменту, когда черная дыра испарится окончательно, все ваше вещество превратится в излучение практически со 100-процентной эффективностью [41] Здесь у нас опять некоторое чрезмерное упрощение, поскольку излучение Хокинга включает в себя и некоторые частицы, которые трудно пустить в дело. Большая черная дыра только 90 % своей массы излучает в доступном для использования виде, а остальные 10 % – в виде гравитонов. Это исключительно деликатные частицы: их почти невозможно обнаружить, не говоря уж о том, чтобы как-то использовать. По мере того как черная дыра все больше излучает и все больше сжимается, в ее излучении появляется все больше нейтрино и других массивных частиц.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу