На концентрации нейтральных частиц в верхней атмосфере могут влиять три типа процессов: молекулярная диффузия, турбулентная диффузия и горизонтальный перенос. Роль каждого из этих процессов определяется временем жизни данных частиц М относительно соответствующего процесса. Относительно какого процесса время жизни меньше, тот и определяет на данных высотах распределение [М]. В случае N0 мы можем довольно аккуратно сравнить времена жизни относительно молекулярной диффузии и фотохимии. Они оказываются равными на высоте около 200 км. Выше доминирует молекулярная диффузия, которая и определяет вертикальный профиль [NO]. Ниже - фотохимия. До каких пор? Пока ее не "переможет" турбулентная диффузия. Но сделать точные оценки этой высоты труднее, поскольку все еще нет надежных данных о коэффициенте турбулентной диффузии, а он-то как раз и определяет необходимое нам время жизни. Можно лишь утверждать, что в области D концентрации окиси азота контролируются именно турбулентной диффузией, которая вместе с фотохимией контролирует, видимо, профиль [N0] и в нижней части области Е.
Помогает ли все это объяснить сильную изменчивость [NO] в областях D и Е? Видимо, нет. Правда, неопределенность с коэффициентом турбулентной диффузии оставляет некоторые возможности для объяснения изменчивости [NO] вариациями этого коэффициента, но в целом в настоящее время считается неизбежным привлекать для объяснения этой изменчивости процессы горизонтального переноса. Увы, дальше этого дело пока не идет. Мы не знаем ни эффективности процесса, ни причины его изменчивости, ни места, откуда, скажем, поступают молекулы N0, создающие высокие концентрации в тех или иных условиях. Вопросов, подобных этим, много. Однако пристальное внимание к проблеме вариаций окиси азота в нижней ионосфере обещает в ближайшее время ответы (и, возможно, очень интересные) по крайней мере на некоторые из них.
Сколько в атмосфере атомного азота?
Вопрос о количестве атомов азота, как уже говорилось, весьма важен для всей проблемы окиси азота. Как обе проблемы решаются в совокупности на основе современной фотохимической теории, мы знаем. Всякая теория проверяется экспериментом. Современная схема процессов с участием N и NО дала разумное согласие с результатами измерений [NO] и [N(2D)]. А как с измерениями невозбужденных атомов N?
Оказывается, измерять концентрации N гораздо труднее, чем концентрации тех же атомов в возбужденном состоянии N(2D), хотя последние составляют лишь малую долю N. Причина тут проста: возбужденные атомы излучают запасенную ими энергию, переходя снова в атомы в основном состоянии. В случае N(2D) это будет зеленая линия с длиной волны 5200 Å. Именно ракетные измерения этой линии и дали упоминавшиеся нами данные о распределении [N(2D)] в атмосфере выше 140 км.
Измерение концентрации N
А обычные атомы азота? Оптическими методами определить их концентрацию очень трудно. Значит, остается основной метод изучения состава верхней атмосферы - масс-спектрометрический. Именно с ним, вернее, с полученными этим методом результатами и связаны сейчас основные проблемы атомного азота выше 100 км.
Масс-спектрометр регистрирует частицы в соответствии с их отношением массы к заряду. (В случае измерения ионного состава ионы поступают прямо из окружающей атмосферы, так сказать, в готовом виде. Когда исследуется нейтральный состав газа, включается специальный ионный источник, превращающий путем ионизации пучком электронов входящие нейтральные частицы в заряженные, которые и поступают в анализатор прибора.)
За условную единицу принято отношение массы к заряду у атома водорода, поэтому соответствующие массовые числа составляют 1 для Н, 2 для Н2, 14 для N, 16 для О, 28 для N2, 30 для NO, 32 для O2 и т. д.
С помощью масс-спектрометра в принципе можно проводить как абсолютные измерения (т. е. прямо получать количество, скажем, атомов О или молекул N2 в кубическом сантиметре), так и относительные. В последнем случае получают соотношение между концентрациями различных компонент, например тех же О и N2.
Обычно масс-спектрометр выполняет именно относительные измерения.
Все было бы хорошо и никаких трудностей с измерением концентраций N не возникало бы, если бы пик атомного азота на масс-спектрограммах образовывался... только из атомного азота. Выясняется, однако, что это не так. Как показали калибровки в лаборатории на спектрах контрольной смеси, в которой заведомо нет атомов N, а есть лишь N2, тем не менее наблюдается пик с массовым числом 14. Откуда он берется? Видимо, это побочный продукт воздействия электронов ионного источника. В самом приборе происходит разрушение части молекул N2 и образование атомов N, которые не имеют ничего общего с реальным существованием атомного азота в атмосфере.
Читать дальше