Прежде всего, говоря о вариациях состава, надо понять, как он изменяется в течение суток. Будет ли отношение [0]/[N2] на данной высоте неизменно днем и ночью и если нет, то когда оно выше? Напрашивается ответ: днем должно быть больше атомов О, так как они образуются в результате воздействия на атмосферу солнечного излучения. Но при аккуратных расчетах получается, что это не так. Время жизни атомов кислорода (см. главу 4) на высотах 100 - 200 км составляет много дней и даже недель. В этом случае концентрация О просто не успевает заметно измениться ото дня к ночи, хотя в ночное время и "выключается" солнечный источник фотодиссоциации.
Зато другой фактор должен приводить к разнице между дневным и ночным составом. Этот фактор - температура. Днем она выше, чем ночью. А чем выше Т, тем больше тяжелых молекул N2 по сравнению с легкими атомами О (см. простую формулу в начале главы). Значит, по теории диффузионного разделения днем отношение [O]/[N2] должно быть меньше, чем ночью. На этом принципе построены все теоретические модели атмосферы.
Диффузионное разделение
Однако когда попробовали сравнить измеренные на ракетах величины [O]/[N2] в разное время суток, пришли к прямо противоположному выводу: дневные значения [O]/[N2] выше ночных. В чем же дело?
Этот вопрос не решен и по сей день. Измерение атомов кислорода в верхней атмосфере с помощью масс-спектрометров связано с большими трудностями. Атомы О могут рекомбинировать на стенках прибора и регистрироваться уже как молекулы O2. В таком случае мы будем измерять меньше О и больше O2, чем есть на самом деле. Чтобы уменьшить этот эффект, в последние годы стали прибегать ко всяческим ухищрениям - делать стенки прибора из специальных материалов (например, титана), на которых атомы О рекомбинируют "неохотно", устраивать искусственное охлаждение анализатора, чтобы максимально уменьшить "подвижность" атомов, и т. д. Однако сомнения по части аккуратности ракетных измерений атомного кислорода, особенно в отношении первых экспериментов, проводившихся в 60-х годах, все еще остаются. А потому остается открытым вопрос о суточных вариациях отношения [О]/[N2].
Очень важную роль играет отношение концентраций атомов и молекул (все то же [0]/[N2]) в области F2, где расположен основной ионосферный максимум. Законы фотохимии приводят к тому (мы расскажем об этом в главе 4), что в области ионосферного максимума (250 - 300 км) равновесная концентрация электронов прямо пропорциональна этому отношению. Значит, оно непосредственно определяет состояние ионосферы.
Именно поэтому все вариации концентрации электронов в максимуме слоя F2, наблюдаемые в виде изменения критических частот этого слоя f0F2 при наземном радиозондировании ионосферы, пытались объяснять в первую очередь вариациями нейтрального состава. О проблемах, связанных с объяснением поведения области F2 изменениями нейтрального состава, мы поговорим подробно в главе 4.
Что же известно сегодня о других вариациях нейтрального состава? На высотах 300 - 400 км абсолютная концентрация атомов кислорода в течение суток меняется слабо; небольшой плоский максимум наблюдается около 14 - 15 часов. Концентрация N2 имеет более выраженные суточные вариации с максимумом около 14 часов. Наложение этих двух суточных кривых и определяет вариации общей плотности g с послеполуденным вздутием.
Хуже обстоит дело с изменением нейтрального состава в течение года. Проблема выглядит несколько по-разному для спутниковых высот (h>250 км) и высот, меньших 200 км, где измерения проводятся в основном на ракетах.
Попробовали сопоставить результаты ракетных измерений, проведенных в различное время года, и получить ход [О]/[N2] на заданной высоте. И получили... Увы, разные группы авторов получили разные результаты. Одна группа пришла к выводу, что в течение года наблюдаются один минимум (весна - лето) и один максимум (зима), т. е. существует годовая вариация отношения [О]/[N2]. Исследователи другой группы пришли к выводу, что в течение года наблюдаются два максимума (около времени весеннего и осеннего равноденствия) и два минимума (летом и зимой), т. е. существуют полугодовые вариации этого отношения.
Если для малых высот преобладающая роль годовой или полугодовой компоненты в вариациях состава до конца не ясна, то относительно спутниковых высот сомнений нет - там доминирует именно полугодовая компонента. Более четко полугодовые вариации выражены на этих высотах у концентрации О, амплитуда изменения которой может составлять 3 - 4. Абсолютные концентрации молекулярного азота таких заметных полугодовых вариаций не обнаруживают. Поскольку выше примерно 200 км [O]>[N2], полугодовые вариации атомного кислорода на спутниковых высотах проявляются и в полугодовых вариациях плотности, о которых мы уже упоминали. Здесь концы с концами сходятся.
Читать дальше