Возвращаясь к нашей аналогии, можно сказать, что и наука в других мирах должна быть похожа на существующую у нас. Физики, химики, математики с разных планет должны найти общий язык, поскольку они описывают одну Вселенную, а эффективно это можно делать, видимо, одним способом. По крайней мере, на нашем уровне развития.
А.КАЖУЩИЕСЯ ИНОГДА ЧУДЕСНЫМИ ВОЗМОЖНОСТИ СОВРЕМЕННОЙ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ ВО МНОГОМ ОБЪЯСНЯЮТСЯ ДЛИТЕЛЬНЫМ РАЗВИТИЕМ ЭТИХ НАУК, МНОЖЕСТВОМ ПОПЫТОК ПРИДУМАТЬ ТЕ ИЛИ ИНЫЕ МЕТОДЫ И КОНСТРУКЦИИ, ИЗ КОТОРЫХ ЛИШЬ НЕМНОГИЕ ВОШЛИ В СОВРЕМЕННЫЙ АРСЕНАЛ НАУКИ, ВЫДЕРЖАВ ВСЕ ПРОВЕРКИ.
Б.РАЗВИТИЕ МАТЕМАТИКИ НАЧАЛОСЬ С ПРАКТИЧЕСКИХ И ДОСТАТОЧНО ПРОСТЫХ ПО СОВРЕМЕННЫМ МЕРКАМ ЗАДАЧ.
В.В ХОДЕ ЭВОЛЮЦИИ НАУКИ МНОГИЕ ФИЗИЧЕСКИЕ ТЕОРИИ ОКАЗАЛИСЬ ТУПИКОВЫМИ И В ИТОГЕ СТАЛИ ДОСТОЯНИЕМ «ХРАНИЛИЩ НАУЧНЫХ ОКАМЕНЕЛОСТЕЙ».
Глава 5
«Эволюция, детка»
Мы уже упоминали о «непостижимой эффективности математики». Некоторые ситуации выглядят абсолютно чудесными [29] Много ярких примеров можно найти в уже упоминавшейся известной статье Ю. Вигнера.
. В XIX веке математики для своих надобностей (я бы не побоялся сказать: «Во время своей игры в бисер») придумали тензоры. А потом Марсель Гроссман, который как раз и был математиком, вовремя рассказал о них Эйнштейну. В результате получилась общая теория относительности. Разве это не чудо, что к тому моменту, когда Эйнштейн (а также, например, Давид Гильберт) размышлял о природе гравитации, у математиков был готов весь необходимый инструментарий? Иначе говоря, не просто были придуманы «какие-то тензоры», а разработаны методы работы с ними, доказаны соответствующие теоремы, под все подведен надежный базис. В 1912 г., когда произошел важный обмен идеями между Гроссманом [30] В знак признания важного вклада Гроссмана в создание ОТО каждые три года проводятся международные конгрессы, носящие его имя и собирающие сотни ученых, работающих в области изучения гравитации и связанных с этим вопросов. На сегодняшний день состоялось уже 15 таких конференций.
и Эйнштейном, тензоры уже стали неотъемлемой частью большой математики и вся надежность и достоверность этой науки были в распоряжении исследователей гравитации (о которой математики наверняка обычно не задумываются, принимая ее как должное и/или неизбежное).
Кажущаяся «магия» математики во многом связана с тем, что чаще всего люди видят лишь конечный результат. В самых разных областях и ситуациях, если мы не знаем о длительном процессе развития, об огромных усилиях, о пробах и ошибках, о множестве отброшенных вариантов, то удивленно восклицаем: «Как это у них получается!» Например, одежда из ткани, которая не горит, не протыкается ножом, но при этом легкая, удобная и теплая, поразила бы древнего человека. С его точки зрения, это практически чудо, но на самом деле– результат долгого, постепенного развития технологии. Это можно было бы ему продемонстрировать, начав с того, как делается нить из шерсти или хлопка, затем объяснить, как из этого ткется ткань, потом показать процесс создания искусственных нитей и т. д. и т. п.
Нелишне заметить, что подобные рассуждения верны не только для развития технологии и науки, но и для высокоорганизованных социально- политических структур. Устойчивые демократические общества пришли к такому состоянию в результате продолжительного и зачастую весьма болезненного развития, через периоды напряженной работы общества в целом, перемежаемые революциями и другими потрясениями.
Длительное и хотя бы относительно устойчивое развитие может приводить к удивительным по сложности результатам, если оценивать их исходя из начального состояния. «Чудеса» современной математики в этом смысле подобны «чуду глаза», чему мы посвятим отдельный разговор. Неоднократно сложность зрительного аппарата представляли в качестве аргумента против эволюции: «Как мог сразу возникнуть такой сложный орган?» Но глаз не возник одномоментно. Он – продукт длительной естественной эволюции без конечной цели , начавшейся с очень простых «устройств». В эволюционном процессе при каждом шаге обычно происходят не такие уж большие усовершенствования, призванные решить локальные проблемы.
Похожим образом развиваются и математика, и области ее применения в науке. Стартовав с простых (по современным меркам) и понятных задач, нередко носивших сугубо практический характер, математика за два тысячелетия достигла уровня, на котором лишь единицы узких специалистов могут реально разобраться в тех или иных самых современных результатах в своей области. Древние греки, начавшие писать первые уравнения, не думали о развитии математического аппарата для теории струн. При этом в биологической эволюции бывают и большие скачки, сопровождаемые массовым вымиранием одних видов и появлением или бурным развитием других. Такие события происходят и в развитии науки, в частности математики и физики.
Читать дальше
Конец ознакомительного отрывка
Купить книгу