Сергей Попов - Все формулы мира

Здесь есть возможность читать онлайн «Сергей Попов - Все формулы мира» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Прочая научная литература, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Все формулы мира: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Все формулы мира»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики. Но это кажется таким сложным и запутанным! Как перестать бояться формул и полюбить математику? Почему она так эффективна в естественных науках? Есть ли этому предел, или, наоборот, для более глубокого понимания природы придется создавать математические конструкции, уже не укладывающиеся в голове человека? Все эти вопросы затрагиваются на страницах книги, а их художественное осмысление представлено в серии рисунков художника Ростана Тавасиева. На многие из них невозможно найти окончательные однозначные ответы. Но мы продолжаем обсуждать их и пытаемся понять, как устроен этот мир. Для этого понадобится преодолеть разделение на «две культуры»: «гуманитариев» и «естественников». Попробуем сделать еще один шаг в этом направлении.

Все формулы мира — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Все формулы мира», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возвращаясь к нашей аналогии, можно сказать, что и наука в других мирах должна быть похожа на существующую у нас. Физики, химики, математики с разных планет должны найти общий язык, поскольку они описывают одну Вселенную, а эффективно это можно делать, видимо, одним способом. По крайней мере, на нашем уровне развития.

А.КАЖУЩИЕСЯ ИНОГДА ЧУДЕСНЫМИ ВОЗМОЖНОСТИ СОВРЕМЕННОЙ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ ВО МНОГОМ ОБЪЯСНЯЮТСЯ ДЛИТЕЛЬНЫМ РАЗВИТИЕМ ЭТИХ НАУК, МНОЖЕСТВОМ ПОПЫТОК ПРИДУМАТЬ ТЕ ИЛИ ИНЫЕ МЕТОДЫ И КОНСТРУКЦИИ, ИЗ КОТОРЫХ ЛИШЬ НЕМНОГИЕ ВОШЛИ В СОВРЕМЕННЫЙ АРСЕНАЛ НАУКИ, ВЫДЕРЖАВ ВСЕ ПРОВЕРКИ.

Б.РАЗВИТИЕ МАТЕМАТИКИ НАЧАЛОСЬ С ПРАКТИЧЕСКИХ И ДОСТАТОЧНО ПРОСТЫХ ПО СОВРЕМЕННЫМ МЕРКАМ ЗАДАЧ.

В.В ХОДЕ ЭВОЛЮЦИИ НАУКИ МНОГИЕ ФИЗИЧЕСКИЕ ТЕОРИИ ОКАЗАЛИСЬ ТУПИКОВЫМИ И В ИТОГЕ СТАЛИ ДОСТОЯНИЕМ «ХРАНИЛИЩ НАУЧНЫХ ОКАМЕНЕЛОСТЕЙ».

Глава 5 Эволюция детка Мы уже упоминали о непостижимой эффективности - фото 5

Глава 5

«Эволюция, детка»

Мы уже упоминали о «непостижимой эффективности математики». Некоторые ситуации выглядят абсолютно чудесными [29] Много ярких примеров можно найти в уже упоминавшейся известной статье Ю. Вигнера. . В XIX веке математики для своих надобностей (я бы не побоялся сказать: «Во время своей игры в бисер») придумали тензоры. А потом Марсель Гроссман, который как раз и был математиком, вовремя рассказал о них Эйнштейну. В результате получилась общая теория относительности. Разве это не чудо, что к тому моменту, когда Эйнштейн (а также, например, Давид Гильберт) размышлял о природе гравитации, у математиков был готов весь необходимый инструментарий? Иначе говоря, не просто были придуманы «какие-то тензоры», а разработаны методы работы с ними, доказаны соответствующие теоремы, под все подведен надежный базис. В 1912 г., когда произошел важный обмен идеями между Гроссманом [30] В знак признания важного вклада Гроссмана в создание ОТО каждые три года проводятся международные конгрессы, носящие его имя и собирающие сотни ученых, работающих в области изучения гравитации и связанных с этим вопросов. На сегодняшний день состоялось уже 15 таких конференций. и Эйнштейном, тензоры уже стали неотъемлемой частью большой математики и вся надежность и достоверность этой науки были в распоряжении исследователей гравитации (о которой математики наверняка обычно не задумываются, принимая ее как должное и/или неизбежное).

Кажущаяся «магия» математики во многом связана с тем, что чаще всего люди видят лишь конечный результат. В самых разных областях и ситуациях, если мы не знаем о длительном процессе развития, об огромных усилиях, о пробах и ошибках, о множестве отброшенных вариантов, то удивленно восклицаем: «Как это у них получается!» Например, одежда из ткани, которая не горит, не протыкается ножом, но при этом легкая, удобная и теплая, поразила бы древнего человека. С его точки зрения, это практически чудо, но на самом деле– результат долгого, постепенного развития технологии. Это можно было бы ему продемонстрировать, начав с того, как делается нить из шерсти или хлопка, затем объяснить, как из этого ткется ткань, потом показать процесс создания искусственных нитей и т. д. и т. п.

Нелишне заметить, что подобные рассуждения верны не только для развития технологии и науки, но и для высокоорганизованных социально- политических структур. Устойчивые демократические общества пришли к такому состоянию в результате продолжительного и зачастую весьма болезненного развития, через периоды напряженной работы общества в целом, перемежаемые революциями и другими потрясениями.

Длительное и хотя бы относительно устойчивое развитие может приводить к удивительным по сложности результатам, если оценивать их исходя из начального состояния. «Чудеса» современной математики в этом смысле подобны «чуду глаза», чему мы посвятим отдельный разговор. Неоднократно сложность зрительного аппарата представляли в качестве аргумента против эволюции: «Как мог сразу возникнуть такой сложный орган?» Но глаз не возник одномоментно. Он – продукт длительной естественной эволюции без конечной цели , начавшейся с очень простых «устройств». В эволюционном процессе при каждом шаге обычно происходят не такие уж большие усовершенствования, призванные решить локальные проблемы.

Похожим образом развиваются и математика, и области ее применения в науке. Стартовав с простых (по современным меркам) и понятных задач, нередко носивших сугубо практический характер, математика за два тысячелетия достигла уровня, на котором лишь единицы узких специалистов могут реально разобраться в тех или иных самых современных результатах в своей области. Древние греки, начавшие писать первые уравнения, не думали о развитии математического аппарата для теории струн. При этом в биологической эволюции бывают и большие скачки, сопровождаемые массовым вымиранием одних видов и появлением или бурным развитием других. Такие события происходят и в развитии науки, в частности математики и физики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Все формулы мира»

Представляем Вашему вниманию похожие книги на «Все формулы мира» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Все формулы мира»

Обсуждение, отзывы о книге «Все формулы мира» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x