Сет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё

Здесь есть возможность читать онлайн «Сет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Литагент 5 редакция «БОМБОРА», Жанр: Прочая научная литература, Интернет, Базы данных, , на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Все лгут. Поисковики, Big Data и Интернет знают о вас всё: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Все лгут. Поисковики, Big Data и Интернет знают о вас всё»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Люди склонны преувеличивать и не договаривать, опросы не показывают всей картины, исследования недостаточно репрезентативны ‒ в общем, лгут все… Кроме Big Data! Перед вами сенсационная книга о том, как при помощи больших данных и современных технологий можно узнать всю подноготную современного общества. Автор этой книги, специалист Google по Data Science, выяснил, что скрывают люди, какие они на самом деле, а не какими хотят казаться. Что же он узнал?

Все лгут. Поисковики, Big Data и Интернет знают о вас всё — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Все лгут. Поисковики, Big Data и Интернет знают о вас всё», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ага! Вот наконец и выяснилась причина, по которой меня позвали сюда.

Саммерс не был первым, кто задал мне этот вопрос. Мой отец в основном поддерживал мои нетрадиционные научные интересы. Но однажды и он поднял эту тему. «Расизм, жестокое обращение с детьми, аборты, – сказал он. – А ты не можешь зарабатывать на этом деньги для себя?» Другие члены семьи и друзья тоже заговаривали об этом. Не говоря уже о коллегах и незнакомцах в интернете. Кажется, всем хотелось знать, могу ли я использовать поиск в Google и другие крупные базы данных для покупки акций. Теперь к ним присоединился бывший секретарь казначейства Соединенных Штатов. Это было уже серьезнее.

Так могут ли новые источники больших данных успешно предсказать, какие акции будут наиболее выгодны? Короткий ответ – нет.

В предыдущих главах мы обсудили четыре мощных достоинства больших данных. В этой поговорим об их ограничениях – о том, чего мы не можем сделать с их помощью и, порой, как мы не должны их применять. Я решил начать этот разговор с рассказа о нашей с Саммерсом неудачной попытке выиграть на фондовых рынках.

В главе 3 мы отмечали, что новые данные скорее будут полезны в случае неубедительности результатов уже осуществленных исследований в той или иной области. Это горькая правда: гораздо легче получить новые выводы по поводу расизма, жестокого обращения с детьми или абортов, чем о том, как функционирует бизнес. Это является следствием того, что на поиск даже малейшего преимущества в эффективности бизнеса брошены поистине огромные ресурсы. Конкуренция в области финансов крайне жесткая.

Саммерс, человек, не склонный воспевать похвалу чужому уму, был уверен, что хедж-фонды нас уже опередили. Во время нашей беседы я был очень впечатлен тем, насколько уважительно он говорил о них, а также его убежденностью в том, что они предвосхитили многие из моих предложений. В ответ я с гордостью поделился с ним придуманным мной алгоритмом, который позволил мне получать более полные данные с помощью Google Trends. Он сказал, что это очень здорово. Когда же я спросил, мог ли «Ренессанс», количественный хедж-фонд, придумать подобный алгоритм, он усмехнулся и сказал: «Да, конечно, они бы смогли догадаться».

Сложность конкурирования с хедж-фондами – не самая основная проблема, с которой мы с Саммерсом столкнулись, продумывая возможность использования новых больших наборов данных для победы на фондовых рынках.

Проклятие числа размерностей

Предположим, ваша стратегия прогнозирования на фондовом рынке – подбрасывание монетки. Но при этом она создана на основе тщательного тестирования. Вот ваша методика: вы наносите метки на тысячу монет – от 1 до 1000. Каждое утро в течение двух лет вы подбрасываете все монеты, записывая, падают они орлом или решкой, а затем смотрите, идет ли индекс Standard amp; Poor’s в тот день вверх или вниз. Вы постоянно анализируете всю статистику. И вуаля! Вы что-то обнаружили. Получается, что при 70,3 % подбрасываний монета № 391 падает решкой вверх тогда, когда индекс S amp;P растет. Связь статистически значимая, ее уровень высокий. Вы нашли свою счастливую монету!

Теперь просто каждое утро подбрасывайте ее и покупайте акции, когда она выпадает решкой. Ваши дни в футболке и с ужином пустой лапшой закончились. Монета 391 – это ваш билет в хорошую жизнь!

Или нет.

Вы стали очередной жертвой одного из самых дьявольских аспектов «проклятия числа размерностей». Он может нанести удар, когда у вас имеется много переменных (или «размерностей») и не так много наблюдений: в данном случае, тысяча монет и 504 торговых дня за эти два года соответственно. Одна из этих размерностей – монета 391 – скорее всего, счастливая. Уменьшите количество переменных – подбрасывайте всего сто монет. И вероятность того, что вам повезет, существенно уменьшится. Увеличьте число наблюдений, попытавшись предсказать поведение индекса S amp;P за 20 лет – и монеты постараются «не ударить в грязь лицом».

«Проклятия размерности» является серьезной проблемой при работе с большими данными, поскольку новые наборы данных никогда не дают нам экспоненциально больше переменных, чем традиционные источники – каждый поисковой запрос, каждая категория твитов и т. д. Многие люди, утверждающие, что способны прогнозировать динамику рынка, используя какой-то большой источник данных, просто оказались в плену этого проклятия. Все, что они действительно сделали – нашли эквивалент монеты 391.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Все лгут. Поисковики, Big Data и Интернет знают о вас всё»

Представляем Вашему вниманию похожие книги на «Все лгут. Поисковики, Big Data и Интернет знают о вас всё» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Все лгут. Поисковики, Big Data и Интернет знают о вас всё»

Обсуждение, отзывы о книге «Все лгут. Поисковики, Big Data и Интернет знают о вас всё» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x