Кликнем на этот прямоугольник и увидим, что этот спонсор потратил $12,7 млн в поддержку избирательной кампании Трампа, разбив сумму на десятки трансакций в течение всей избирательной кампании.
Нередко визуализация данных вдохновляет на журналистское расследование. Так, когда я впервые увидела визуализацию расходов избирательного комитета Трампа, я заметила этот прямоугольник, помеченный словом «шляпы» (рис. 11.3). А в 2016 г. в рамках кампании комитет потратил $2,2 млн на шляпы производства компании Cali-Fame (рис. 11.4).
Осенью 2016 г. я ничего не знала о Cali-Fame, но мне казалось, что из этого может получиться расследование о том, как Трамп тратит деньги на шляпы. Та же идея пришла в голову репортеру Филиппу Бампу. 25 октября 2016 г. он опубликовал в Washington Post статью под названием «В период избирательной кампании Дональд Трамп тратит на шляпы, а не на опросы» [159] Bump, “Donald Trump’s Campaign Has Spent More on Hats than on Polling.”
. И не только на это, надо сказать. Трамп также потратил $14,3 млн на футболки, кружки, стикеры и перевозку всего этого – все это было произведено компанией Ace Specialities LLC, специализирующейся на производстве рабочей одежды для нефтегазовых компаний. Владелец компании Кристл Махфуз состоит в совете директоров фонда Эрика Трампа [160] Donn, “Eric Trump Foundation Flouts Charity Standards.”
. Значит ли это что-нибудь? Я не знаю. Однако, будь я политическим журналистом, это послужило бы основой для нового расследования.
Эндрю Шивашман, журналист, пишущий об индустрии туризма для сайта Skift, иначе видел ситуацию. Он использовал данные в статье «Клинтон против Трампа: где кандидаты в президенты тратили свои доллары». В рамках статьи он анализирует то, как, пользуясь средствами избирательной кампании, Трамп платит собственной фирме TAG Air за перелеты [161] Sheivachman, “Clinton vs. Trump.”
. Это не незаконно, но примечательно. Это также представляет почву для обсуждения множества вещей, которые не являются незаконными, но едва ли уместны. И журналистские расследования – единственный способ придать таким обсуждениям начальный импульс. Ведь истории помогают понять мир. Кроме того, не существует простых ответов. Чтобы разрешить эти вопросы в демократической манере, необходима социальная дискуссия, в которой бы присутствовали разные мнения.
Story Discovery Engine – это, скорее, система с оператором в контуре управления, нежели автономная система. Разница между ними подобна разнице между дроном и реактивным ранцем. И эта разница имеет значение в случае проектирования программного обеспечения. Если вы ждете от компьютера всевозможных чудес, то будете разочарованы. Однако если вы ожидаете, что он ускорит выполнение рутинных задач, то все будет хорошо. Позиция в пользу машинной поддержки человека набирает популярность в хедж-фондах с оборотом $2,9 млн – а они всегда были показательны с точки зрения внедрения новых количественных методов. Миллиардер Пол Тюдор Джонс, глава Tudor Investment Group, как-то произнес свою легендарную фразу: «Ни один человек не лучше машины, и ни одна машине не лучше человека» [162] Fletcher and Zuckerman, “Hedge Funds Battle Losses.”
.
Другой способ разобраться в том, как работает движок, – это представить, что он отражает разницу между что есть и чем должно быть. Что должно быть : административные расходы не должны превышать 20 % от общих расходов. Что есть : независимо от процентов ежегодные расходы относятся к административным – согласно отчетам, передаваемым в Федеральную избирательную комиссию. И, если обнаруживается аномалия – если административные расходы превышают 20 %, тогда появляется почва для журналистского расследования.
Что я имею в виду под почвой для расследований ? Нельзя гарантировать, что в каком-то случае совершенно точно есть готовая история, поскольку для больших объемов административных расходов в определенном квартале есть причина. И мы не хотим создавать механизм, который будет констатировать, что существует вероятность, равная 47 %, что та или иная политическая группа действует нелегитимно, ведь ее административные расходы в этом месяце превышены на 2 %. Это абсурд – и, вероятно, клевета.
Нередко, когда я беседую с учеными-информатиками, они советуют обращать внимание на пять самых высоких и пять самых низких показателей, а также на среднее значение по массиву данных. Это хорошая идея, но она не всегда работает с точки зрения журналистики. Допустим, мы «скормим» нашей программе список зарплат сотрудников школьного округа. Пять самых высоких позиций наверняка будут принадлежать директору и ключевым руководящим позициям. Пять самых низких позиций окажутся у низкооплачиваемых сотрудников, тех, кто не состоит в профсоюзах и работает неполный рабочий день. Ничего нового. Это может заинтересовать тех, кто не в курсе уровня зарплат в этой области, однако это точно не считается инфоповодом. Как журналисты мы должны быть одновременно точны и интересны массовому читателю. В этом смысле выкладки ученых могут быть интересными небольшому кругу лиц или достаточно подготовленной аудитории (я всегда им завидовала из-за этого). Порог интереса различается в каждой категории.
Читать дальше