Чарльз Петцольд - Код. Тайный язык информатики

Здесь есть возможность читать онлайн «Чарльз Петцольд - Код. Тайный язык информатики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Манн, Иванов и Фербер, Жанр: Прочая научная литература, Программирование, Прочая околокомпьтерная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Код. Тайный язык информатики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Код. Тайный язык информатики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Код» представляет собой увлекательное путешествие в прошлое – мир электрических устройств и телеграфных машин. Знакомство с прообразами первых компьютеров позволит читателю с любым уровнем технической подготовки узнать о том, как работают современные электронные устройства.

Код. Тайный язык информатики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Код. Тайный язык информатики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Другим популярным семейством чипов является КМОП (комплементарная структура металл — оксид — полупроводник), или CMOS (complementary metal-oxide-semiconductor). Если бы в середине 1970-х в свое свободное время вы собирали схемы из чипов КМОП, то в качестве справочника могли бы использовать книгу CMOS Databook, опубликованную компанией National Semiconductor. Эта книга содержит информацию о микросхемах КМОП серии 4000.

Потребляемая мощность микросхем ТТЛ — от 4,75 до 5,25 вольта, для микросхем КМОП — от 3 до 18 вольт. Довольно большой диапазон! Кроме того, микросхемы КМОП потребляют гораздо меньше энергии по сравнению с ТТЛ-чипами, что делает возможным создание на их основе небольших устройств, работающих от батареек. Недостаток микросхемы КМОП — низкая скорость работы. Например, гарантированное время установки 4-битного полного сумматора КМОП 4008, работающего от напряжения 5 вольт, — 750 наносекунд. Скорость увеличивается по мере роста напряжения и составляет 250 наносекунд при десяти вольтах и 190 наносекунд — при 15 вольтах. Однако по этому показателю устройство на основе микросхем КМОП сильно отстает от 4-битного ТТЛ-сумматора, время установки которого 24 наносекунды. (Двадцать пять лет назад компромисс между скоростью микросхемы ТТЛ и низким энергопотреблением микросхемы КМОП был довольно явным. Сегодня существуют версии ТТЛ-чипов с малым энергопотреблением и высокоскоростные версии микросхем КМОП.)

На практике соединение микросхем начинается на пластиковой макетной плате.

Каждые пять отверстий электрически соединены под пластмассовым основанием - фото 406

Каждые пять отверстий электрически соединены под пластмассовым основанием. Микросхема вставляется в макетную плату так, чтобы она опиралась на длинную центральную борозду, а ее выводы попадали в отверстия по обе стороны. Каждый вывод ИС при этом электрически совмещается с четырьмя другими отверстиями. Микросхемы объединяются с помощью проводов, вставляемых в другие отверстия.

Вы можете обеспечить постоянное соединение микросхем, используя технологию под названием монтаж накруткой . В данном случае каждая микросхема вставляется в гнездо с длинными квадратными штырьками.

Каждый штырек соответствует выходу микросхемы Сами гнезда располагаются в - фото 407

Каждый штырек соответствует выходу микросхемы. Сами гнезда располагаются в тонких перфорированных платах. С обратной стороны платы вы используете специальный моточный агрегат для того, чтобы плотно обмотать штырек тонким изолированным проводом. Острые края штырька прорывают изоляцию, благодаря чему между штырьком и проводом возникает электрическое соединение.

Если бы вы занимались производством конкретного устройства на основе ИС, вероятно, использовали бы печатную плату . В былые времена ее мог изготовить даже любитель. Плата — это пластина с отверстиями, покрытая тонким слоем медной фольги. Те участки фольги, которые требуется сохранить, покрываются кислотостойким веществом, после чего остальная часть протравливается кислотой. Затем вы можете припаять гнезда ИС (или сами ИС) непосредственно к медному покрытию. Однако из-за большого количества взаимосвязей между ИС оставшейся области медной фольги обычно оказывается недостаточно, поэтому изготавливаемые промышленным способом печатные платы имеют несколько уровней межсоединений.

К началу 1970-х стало возможным использовать ИС для сборки компьютерного процессора целиком на единой плате. А размещение всего процессора в одном чипе было лишь вопросом времени. Несмотря на то что компания Texas Instruments запатентовала однокристальный компьютер в 1971 году, честь его создания принадлежит компании Intel, основанной в 1968 году бывшими сотрудниками Fairchild Semiconductors Робертом Нойсом и Гордоном Муром. Первым важным продуктом компании Intel в 1970 году стал чип памяти с наибольшей на тот момент емкостью 1024 бит.

Компания Intel занималась разработкой микросхем для программируемого калькулятора, который собиралась производить японская Busicom, когда ее инженеры решили использовать другой подход. Как отметил инженер Intel Тед Хофф, «вместо калькулятора с возможностью программирования я хотел создать компьютер общего назначения, запрограммированный на выполнение функций калькулятора». Это привело к разработке Intel 4004, первого «компьютера в чипе», или микропроцессора . Продажи микросхемы 4004 начались в ноябре 1971 года, она содержала 2300 транзисторов. (Согласно закону Мура, микропроцессоры, созданные 18 лет спустя, должны содержать примерно в 4000 раз больше транзисторов, или около десяти миллионов. Это предсказание оказалось довольно точным.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Код. Тайный язык информатики»

Представляем Вашему вниманию похожие книги на «Код. Тайный язык информатики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Код. Тайный язык информатики»

Обсуждение, отзывы о книге «Код. Тайный язык информатики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x