Растровые изображения могут занимать довольно много места, в связи с чем возникает необходимость в разработке способа уменьшения их объема. Этой задаче посвящена целая область информатики под названием сжатие данных .
Вернемся к примеру с изображением, где на пиксел приходится по три бита. Это фотография неба и дома с газоном с большими областями синего и зеленого цветов. Возможно, верхняя строка растрового изображения содержит 72 синих пиксела, идущих подряд. Чтобы уменьшить объем растрового изображения, нужно закодировать в файле данные о том, что синий пиксел повторяется 72 раза. Такой способ сжатия называется кодированием серий последовательностей (Run-Length Encoding, RLE).
Алгоритм RLE используется в обычном офисном факсимильном аппарате для уменьшения размера изображения перед его отправкой по телефонной линии. Поскольку факс распознаёт только черный и белый цвета без оттенков серого, факсимильное изображение часто содержит длинные последовательности белых пикселов.
Уже довольно давно популярен формат растровых изображений GIF (Graphics Interchange Format, «формат для обмена изображениями»), разработанный компанией CompuServe в 1987 году. Этот формат использует алгоритм сжатия данных LZW, названный так по именам создателей (Lempel, Ziv, Welch, алгоритм Лемпеля — Зива — Велча). Алгоритм LZW является более мощным, чем RLE, поскольку помимо последовательностей одинаковых пикселов он способен распознавать закономерности , состоящие из различных пикселов.
Алгоритмы RLE и LZW называются методами сжатия данных без потерь , поскольку исходный файл может быть полностью восстановлен. Другими словами, сжатие обратимо . Однако метод обратимого сжатия данных подходит не для всех типов файлов. В некоторых случаях объем сжатого файла превышает объем исходного!
В последние годы широкое распространение получили методы сжатия данных с потерями . Алгоритм сжатия с потерями не является обратимым, поскольку при его использовании некоторые исходные данные безвозвратно теряются. Вы вряд ли примените этот алгоритм к электронным таблицам или текстовым документам, так как в них каждое число и слово имеют значение. Однако вы, вероятно, не станете возражать против его применения к изображениям при условии, что потеря данных не окажет существенного влияния на результат. Именно поэтому методы сжатия данных с потерями основаны на психологических исследованиях, задача которых выявить, что важно для человеческого визуального восприятия, а что нет. Самые распространенные методы сжатия данных с потерями, применяемые для растровых изображений, известны под общим названием JPEG (Joint Photography Experts Group, «объединенная группа экспертов по фотографии»). Формат JPEG фактически объединяет несколько алгоритмов сжатия как с потерями, так и без.
Преобразовать метафайл в растровое изображение довольно просто. Поскольку видеопамять и битовый массив концептуально идентичны, программа, способная записать метафайл в видеопамять, также может сохранить его в битовый массив.
Преобразовать растровое изображение в метафайл не так просто, а в случае сложного изображения вообще невозможно. Один из способов решения этой задачи — оптическое распознавание символов (Optical Character Recognition, OCR). Оно используется, когда нужно преобразовать в ASCII-коды растровое изображение некоторого текста (например, полученную по факсу или отсканированную печатную страницу). Программное обеспечение OCR анализирует точечные последовательности и определяет, каким символам они соответствуют. Из-за алгоритмической сложности этой задачи OCR-программы обычно не дают абсолютно точного результата. Еще менее точным является программное обеспечение, предназначенное для преобразования в ASCII-коды рукописного текста.
Растровые изображения и метафайлы используются для цифрового представления визуальной информации. Звуковую информацию тоже можно преобразовать в биты и байты.
Цифровой звук произвел настоящий фурор в 1983 году благодаря появлению компакт-диска (compact-disk, CD), который стал самым успешным продуктом в истории потребительской электроники. Компакт-диск был разработан компаниями Philips и Sony и позволял хранить на одной стороне диска диаметром 12 сантиметров цифровые аудиофайлы общей длительностью 74 минуты. Такая длительность была выбрана для того, чтобы на компакт-диске могла уместиться Девятая симфония Бетховена.
Для кодирования звука подходит метод кодово-импульсной модуляции . Несмотря на сложное название, концептуально этот метод довольно прост.
Читать дальше
Конец ознакомительного отрывка
Купить книгу