Например, сложение чисел с плавающей точкой сводится к сложению их значащих частей; сложность заключается лишь в порядках. Предположим, вам необходимо выполнить следующую операцию сложения:
(1,1101 × 25) + (1,0010 × 22).
В данном случае нужно сложить числа 11101 и 10010, однако второе число необходимо преобразовать с учетом разницы в значениях порядков. Фактически требуется сложить целые числа 11101000 и 10010. Итоговая сумма составит:
1,1111010 × 25.
Иногда разница в порядках может быть такой большой, что одно из двух чисел даже не повлияет на сумму. Это может произойти, например, при сложении расстояния от Земли до Солнца и радиуса атома водорода.
Перемножение двух чисел с плавающей точкой сводится к перемножению двух значащих частей как обычных целых чисел и сложению двух целочисленных значений порядков. Нормализация значащей части может привести к уменьшению нового значения порядка.
Следующий уровень сложности при использовании чисел с плавающей точкой связан с вычислением квадратных корней, степеней, логарифмов и тригонометрических функций. Однако все эти задачи можно решить с помощью четырех основных операций: сложения, вычитания, умножения и деления.
Например, такая тригонометрическая функция, как синус, вычисляется с помощью разложения в ряд.
Аргумент x должен выражаться в радианах , где 360° — это 2π радиан, восклицательный знак — факториал числа, или произведение всех целых чисел от 1 и до этого числа. Например, 5! = 1 × 2 × 3 × 4 × 5. В данном случае все сводится к простому умножению. Возведение числителей дробей в степень тоже предполагает умножение. Остальными операциями являются деление, сложение и вычитание. Единственная по-настоящему сложная часть — многоточие в конце выражения, означающее, что это вычисление может продолжаться бесконечно . На практике если вы ограничитесь диапазоном от 0 до π/2 (из которого можно вывести все остальные значения синуса), то сможете избежать лишних вычислений. Вам достаточно десятка слагаемых в этом разложении для получения 53-битных значений двойной точности.
Если учесть, что компьютеры предназначены для того, чтобы облегчать людям жизнь, может показаться, что написание множества подпрограмм для выполнения арифметических операций с плавающей точкой противоречит цели их создания. Однако в этом вся прелесть программного обеспечения. Написанные кем-то подпрограммы для конкретного компьютера могут использоваться другими людьми. Арифметика с плавающей точкой настолько важна для научных и инженерных приложений, что ей традиционно придается огромное значение. На заре компьютерной эры при создании программного обеспечения для нового типа компьютеров написание подпрограмм для выполнения расчетов с плавающей точкой было одной из первоочередных задач.
Целесообразно разработать машинные инструкции специально для выполнения вычислений с плавающей точкой! Очевидно, это легче сказать, чем сделать, однако важность такой задачи трудно переоценить. Если вы сможете реализовать арифметику с плавающей точкой на уровне аппаратного обеспечения, подобно командам умножения и деления в 16-разрядных микропроцессорах, то все вычисления с плавающей точкой будут выполняться компьютером гораздо быстрее.
Первым коммерческим компьютером, в котором вычисления с плавающей точкой могли осуществляться на аппаратном уровне, был IBM 704, выпущенный в 1954 году. Все числа в нем хранились в виде 36-битных значений. Числа с плавающей точкой разбивались на 27-битную значащую часть, 8-битный порядок и однобитный знак. Специальные аппаратные компоненты для расчетов с плавающей точкой могли выполнять операции сложения, вычитания, умножения и деления. Остальные функции реализовывались в программном обеспечении.
В настольном компьютере аппаратное обеспечение для вычислений с плавающей точкой появилось в 1980 году, когда компания Intel выпустила чип 8087. Интегральные микросхемы такого типа в наши дни называются математическими сопроцессорами , или блоками вычислений с плавающей точкой . Микросхема 8087 была названа со процессором, поскольку не могла работать сама по себе. Ее можно было использовать только в сочетании с первыми 16-разрядными микропроцессорами Intel 8086 и 8088.
Сопроцессор 8087 — микросхема с 40 выводами, которая использует многие из тех же сигналов, что и микропроцессоры 8086 и 8088. С помощью этих сигналов микропроцессор и математический сопроцессор взаимодействуют. Когда ЦПУ считывает специальную команду ESC (Escape), сопроцессор перехватывает управление и выполняет следующий машинный код, соответствующий одной из 68 команд для вычисления тригонометрических функций, степеней, логарифмов и т. д. Типы данных основаны на стандарте IEEE. В свое время сопроцессор 8087 считался самой сложной интегральной схемой.
Читать дальше
Конец ознакомительного отрывка
Купить книгу