Итак, если отвлечься от маленьких черных дыр, что можно сказать о распаде вакуума? Все остальные варианты гибели Вселенной, рассмотренные ранее, по крайней мере, предполагают такую отдаленность во времени, что все опасения по их поводу можно смело оставить постчеловеческим сущностям, которые будут населять космос после нас. Особенность распада вакуума заключается в том, что он может произойти в любой момент, даже если вероятность этого чрезвычайно мала. Кроме того, он предполагает тотальное разрушение Вселенной.
В 1980 году два теоретика, Сидни Коулман и Фрэнк Де Луччиа, рассчитали, что пузырь истинного вакуума будет содержать не только элементарные частицы с совершенно иными (и смертоносными) свойствами, но и пространство, которое по своей природе гравитационно нестабильно. По их словам, после образования пузыря все его содержимое коллапсирует в течение нескольких микросекунд. Вот что они написали:
Это удручает. Вероятность того, что мы существуем в ложном вакууме, никогда не была особенно обнадеживающей. Распад вакуума представляет собой окончательную экологическую катастрофу; в новом вакууме будут действовать другие физические константы; после распада вакуума невозможной станет не только жизнь, какой мы ее знаем, но и привычная нам химия. Тем не менее всегда можно было утешиться мыслью о том, что со временем в новом вакууме может возникнуть если и не жизнь, какой мы ее знаем, то, по крайней мере, некие структуры, способные радоваться своему существованию. Теперь и эта возможность исключена [69] Это описание остается одним из самых прекрасных примеров физической поэзии, которые я когда-либо видела в научном журнале.
.
Распад вакуума – это относительно новая идея, которая опирается на множество экстремальных видов физики, так что за следующие несколько лет наш взгляд на нее, скорее всего, резко изменится. Возможно, благодаря более подробным и строгим вычислениям мы получим другие результаты. Все эти вопросы очень сложны, и до достижения консенсуса нам еще далеко.
Если мы признаем, что наш вакуум действительно является метастабильным, этот вывод может оказаться несовместимым с теорией космической инфляции. По нашим оценкам, квантовых флуктуаций на стадии инфляции и высокой температуры после нее должно было оказаться достаточно, чтобы спровоцировать распад вакуума в первые моменты существования космоса, что свело бы на нет наши шансы на существование. Очевидно, такого не произошло. Это говорит о том, что либо мы не понимаем устройство ранней Вселенной, либо распад вакуума в прошлом был невозможен.
Как бы вы ни относились к теориям о ранней Вселенной, серьезное рассмотрение возможности распада вакуума зависит от того, насколько вы доверяете Стандартной модели физики элементарных частиц, которая, как мы знаем, не является исчерпывающей. Темная материя, темная энергия и несовместимость квантовой механики и общей теории относительности указывают на то, что во Вселенной есть еще что-то, чего мы не знаем. То, что придет на смену Стандартной модели, вполне может избавить нас от необходимости переживать по поводу квантового пузыря смерти.
А может быть и так, что дальнейшие разработки в области фундаментальной физики расскажут нам о совершенно новых вариантах гибели Вселенной. Возможность существования дополнительных пространственных измерений, которые не дают покоя физикам, надеющимся создать миниатюрные черные дыры с помощью ускорителей частиц, обогащает Вселенную новыми неизведанными областями. Подобно исследователю, достигшему края карты, мы протягиваем руку, не зная, что нам предстоит найти. Дополнительные пространственные измерения могут помочь нам разрешить некоторые проблемы в теориях гравитации, однако на полях постоянно расширяющейся космической карты мы наверняка обнаружим предупреждение: «здесь водятся монстры».
ГАМЛЕТ: О боже! Заключите меня в скорлупу ореха, и я буду мнить себя повелителем бесконечности, только избавьте меня от дурных снов.
Уильям Шекспир, «Гамлет» (пер. Б. Пастернака)
14 сентября 2015 года, в 9 часов 50 минут и 45 секунд утра по Гринвичу вы на миг стали чуточку выше.
Гребень гравитационной волны, которая вас омыла, путешествовал по космосу, искривляя само пространство, на протяжении 1,3 миллиарда лет, – с момента слияния двух черных дыр, масса каждой из которых в 30 раз превышала массу Солнца. Хотя вы, скорее всего, ничего не заметили. В конце концов, ваш рост увеличился менее чем на миллионную ширины протона, однако от внимания физиков из лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO) это не укрылось. Первое обнаружение гравитационных волн стало кульминацией многолетних поисков, потребовавших разработки новых технологий и создания самого чувствительного оборудования в истории экспериментальной физики. Выявление этой ряби на ткани пространства-времени послужило окончательным подтверждением общей теории относительности Эйнштейна.
Читать дальше
Конец ознакомительного отрывка
Купить книгу