Это открытие было революционным и, вероятно, одним из самых важных в истории астрономии, поскольку оно наконец позволило нам оценить масштаб окружающей нас Вселенной. Обнаружив в той или иной области космоса цефеиду, мы можем получить представление о расстоянии до нее и приступить к созданию удобной карты. Измеряя период пульсации цефеиды и учитывая, насколько яркой она казалась, Ливитт могла довольно точно определить ее реальную яркость, а значит, и расстояние до звезды.
Как далеко это может нас завести? Мы способны рассмотреть цефеиды Млечного Пути и соседних галактик, поэтому с помощью параллакса можем определить расстояние до ближайших цефеид, тщательно откалибровать соотношение «период – светимость», а затем использовать более отдаленные звезды для определения расстояния до других галактик. Следующая ступень лестницы расстояний является критически важной, но здесь может возникнуть путаница. В предыдущей главе мы говорили, что для измерения расстояний может использоваться определенный вид сверхновых.
Вспышкой сверхновой типа Ia называется мощный взрыв белого карлика, поглотившего часть вещества другой незадачливой звезды. Поскольку все белые карлики являются довольно простыми объектами [55] Во всяком случае, по меркам звезд.
, а физика их взрыва казалась нам достаточно понятной, сверхновые типа Ia на протяжении некоторого времени считались хорошими стандартными свечами благодаря предсказуемым свойствам их взрывов. Однако позднее выяснилось, что их следовало бы называть не стандартными, а «стандартизируемыми» в том смысле, в котором это понятие применимо к цефеидам. Исследуя динамику изменения блеска, мы можем получить представление об общем количестве энергии, выделяемой при взрыве, а значит, и о его реальной яркости.
Термоядерно-яркий звездный свет
Однако эта книга о разрушении, и было бы непростительно, если бы при описании вспышки сверхновой типа Ia я бы ограничилась невыразительной фразой «взрывающаяся звезда». Белый карлик, в которого однажды превратится и наше Солнце, сам по себе чудо звездной эволюции. А его взрыв представляет собой термоядерную детонацию всего вещества звезды, вспышка которой способна затмить сияние целой галактики.
Если вы – звезда любого типа, то, на какой бы стадии жизненного цикла вы ни находились, ваше существование зависит от деликатного баланса между давлением, создаваемым в вашем ядре, и гравитацией, порождаемой веществом, из которого вы состоите. (Это состояние называется «гидростатическим равновесием», а его суть сводится к идее о том, что гравитация, направленная внутрь, должна быть уравновешена направленным наружу давлением, чтобы звезда не взорвалась и не коллапсировала.) В большинстве случаев давление создается термоядерными реакциями в ядре звезды, в ходе которых легкие атомные ядра сливаются, превращаясь в атомы более тяжелых элементов. Слияние самых легких атомных ядер сопровождается выделением энергии в виде излучения, которое и отвечает за давление, предотвращающее коллапс звезды.
В случае такой звезды, как Солнце, направленное наружу давление обеспечивается слиянием ядер водорода в ядра гелия. Фактически большинство звезд представляют собой гигантские заводы по производству гелия, которые поглощают водород, самый распространенный элемент во Вселенной, и ежесекундно производят из него бесчисленные миллиарды ядер гелия. Давайте рассмотрим пример дорогого нашему сердцу Солнца.
Прямо сейчас Солнце сжигает водород, создавая избыток гелия в ядре, что со временем приведет к изменению температуры и давления. Поскольку эффективность завода зависит как от температуры, так и от давления, количество выделяемой Солнцем энергии и его размер будут меняться, – за следующие несколько миллионов лет оно станет ярче и чуть крупнее [56] По текущим оценкам, радиус Солнца уже увеличивается примерно на 1 дюйм в год. Но в то же время орбита Земли расширяется, так что мы удаляемся от Солнца примерно на 15 сантиметров в год (здесь я не буду извиняться за смешение единиц измерения), поэтому пока не похоже, чтобы поверхность Солнца приближалась к нам.
.
Примерно через миллиард лет мы начнем поджариваться. Однако даже после того, как Земля встанет на путь превращения в обугленный безжизненный кусок породы, история Солнца будет еще далека от завершения. Повышение температуры Солнца, из-за которого сгорят внутренние планеты (Меркурий и Венера) и испарятся океаны на Земле, будет сопровождаться сожжением такого огромного количества водорода, что в итоге у заполненного гелием ядра останется лишь тонкая водородная оболочка. Затем температура в ядре повысится настолько, что гелий начнет превращаться в кислород и углерод, а Солнце раздуется и станет огромным красным гигантом. За следующие несколько миллиардов лет Солнце сожжет остатки водорода, после чего начнется настоящая агония. Ядро станет заполняться кислородом, а затем углеродом, – реакции ядерного синтеза на этом этапе будут поддерживаться за счет гравитационного сжатия ядра. В конце концов, после того, как Солнце поглотит Венеру, а Земля превратится в дымящийся кусок породы, гравитация звезды будет уже недостаточной для поддержания температуры, необходимой для дальнейшего ядерного синтеза. Солнце сбросит внешнюю оболочку, и его ядро начнет сжиматься.
Читать дальше
Конец ознакомительного отрывка
Купить книгу