Если экспериментатор откроет ящик, он обязательно увидит только одно из двух конкретных состояний – «ядро распалось, кот мёртв», или «ядро не распалось, кот жив». Но как определить статус кота, не открывая ящика?
Пока он закрыт, система «ядро-кот» находится в состоянии «ядро распалось, кот мёртв» с вероятностью 50%, и в состоянии «ядро не распалось, кот жив» с точно такой же вероятностью 50%. Выходит, что кот, сидящий в закрытом ящике, одновременно и жив, и мёртв.
Но ведь мы точно знаем, что это невозможно. Просто не существует состояния, промежуточного между жизнью и смертью.
Хуже того, поскольку вероятность обоих исходов равнозначна, получается, что судьба кота становится ясной лишь тогда, когда ящик открывается. То есть, результат эксперимента зависит от поведения экспериментатора, точнее от момента времени наблюдения кота.
Следовательно, невозможно объективно установить, когда кот перестаёт находиться в неопределённом состоянии и оказывается либо живым, либо мёртвым. Получается, что физический процесс зависит в прямом смысле этого слова от взгляда наблюдателя.
Для учёных во времена Шрёдингера такой вывод был равнозначен краху всей науки. В классическом мире субъективные действия экспериментатора не могут влиять на объективные законы природы. В чём же дело?
Ответ дала квантовая физика.
Глава 6. Квантовая физика
Всю энергию во Вселенной мы наблюдаем в виде пучков, которые называются квантами. Самый известный из них – квант света – фотон.
В привычном нам макромире энергия переносится двумя способами. Во-первых, материальными частицами при движении. Во-вторых, волнами. Таким образом, все носители энергии могут быть либо корпускулярными (состоящими из частиц), либо волновыми.
Общепринятая точка зрения заключается в том, что классическая физика описывает мир в макроскопическом масштабе, а квантовая механика начинает работать только на уровне мельчайших частиц. Но чем больше мы познаём реальность, тем больше появляется аргументов в пользу того, что наш мир в целом квантовый. Это заставляет пересмотреть многие традиционные взгляды на Вселенную.
Границу между макромиром, в котором действуют классические законы физики, и микромиром, в котором действуют законы квантовой механики, определяет постоянная Планка 4 4 Планк Макс Карл Эрнст Людвиг – выдающийся немецкий физик-теоретик, основоположник квантовой физики.
. Постоянная Планка используется во всех главных уравнениях квантовой механики. Она устанавливает минимальный предел пространства, после которого начинают сказываться неопределённые законы квантового мира.
Значение постоянной Планка выражается числом 0.0000000000000000000000000000006626 Дж/с. Длина Планка = 0.00000000000000000000000000000000001 сантиметра.
На меньшем расстоянии понятие пространства становится бессмысленным.
Чтобы понять, насколько это маленькая величина, приведу такое сравнение: если размер атома увеличить до размера видимой Вселенной, то длина Планка будет равна длине обыкновенной трости.
Время Планка примерно =10 —44 секунды. Это временной интервал, необходимый свету, чтобы преодолеть длину Планка. Ниже него общепринятое понятие времени также бессмысленно.
Планковские значения характеризуются тем, что на их границах квантовые флуктуации пространства-времени становятся определяющими и чрезвычайно сильными. На этих масштабах привычные нам законы физики перестают работать.
Первый квантовый эксперимент был проведён ещё в 1801 году Томасом Юнгом 5 5 Юнг Томас – британский физик, один из основоположников волновой теории света.
. Это очень известный опыт с двумя щелями при котором через экран с двумя маленькими отверстиями проходит свет. Когда Юнг разместил позади этого экрана другой, сплошной и тёмный, то, к своему удивлению, обнаружил на нём не две точки света, а волновой узор. В те годы это было совершенно необъяснимо.
Сейчас мы точно знаем, что столь поразительный результат эксперимента может означать лишь одно – квант одновременно является и частицей, и волной.
Это сложно сразу осознать.
В привычном мире мы имеем дело либо с частицами (условно говоря – «шарик»), либо с волной (условно говоря – «рябь» на поверхности). В повседневной жизни мы представляем свет как волну. Но на самом деле в квантовом мире он может быть частицей – фотоном. Напротив, электрон и другие частицы могут вести себя как волны. Это свойство называется дуальностью или двойственностью квантового мира. В котором, как выяснилось, наши представления о «нормальном» поведении материи неприменимы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу