В струнной теории благодаря этим симметриям уходят оставшиеся противоречия и аномалии. Поскольку симметрии представляют собой одно из наиболее прекрасных и мощных средств, имеющихся в нашем распоряжении, то вполне можно было бы ожидать, что теория Вселенной должна обладать наиболее изящной и мощной симметрией, какая только известна науке. Логичной была бы симметрия, которая позволила бы менять местами не только кварки, но и все частицы, которые можно встретить в природе. Это значит, что все уравнения должны оставаться неизменными, если мы изменим положение всех частиц относительно друг друга. Такой подход в точности описывает симметрия суперструны, называемая суперсимметрией. [7] В конце 1960-х, когда физики впервые занялись поисками симметрии, которая включала бы в себя все природные частицы, гравитацию в эти поиски преднамеренно не включили. Объясняется это тем, что существует два типа симметрии. Одни относятся к физике частиц — они позволяют менять частицы местами между собой. Но существует также и другой тип симметрии, который превращает пространство во время, и эти пространственно-временные симметрии связываются с гравитацией. Теория гравитации основана не на симметриях меняющихся местами точечных частиц, а на симметриях вращений в четырех измерениях: группа Лоренца в четырех измерениях 0(3,1).
Это единственный вид симметрии, который позволяет менять местами все известные физикам субатомные частицы. Такая симметрия является идеальным претендентом на место симметрии, которая организует все частицы Вселенной в единое, изящное целое.
Если рассматривать все взаимодействия и частицы Вселенной, то мы увидим, что, в зависимости от спина, все они делятся на две категории — «фермионы» и «бозоны». Они ведут себя как волчки, которые могут вращаться с различными скоростями. К примеру, спин фотона, частицы, являющейся носителем электромагнитного взаимодействия, равен единице. Гравитон, частица гравитации, имеет спин, равный двум. Все частицы, обладающие спином, выражающимся целым числом, называют бозонами. Подобным образом, частицы вещества описываются при помощи субатомных частиц, спин которых выражается полуцелыми значениями — 1/2, 3/2, 5/2 и так далее. (Частицы с полуцелыми значениями спина называют фермионами. К ним относятся электрон, нейтрино и кварки.) Таким образом, супер симметрия изящно выражает дуализм, возникающий между бозонами и фермионами, между взаимодействиями и веществом.
В теории, основанной на суперсимметрии, у каждой частицы есть напарник: каждый фермион находится в паре с бозоном. Хотя мы никогда не наблюдали этих суперсимметричных партнеров в природе, физики окрестили партнера электрона «сэлектроном», который обладает спином, равным нулю. (Физики добавляют «с» для описания суперпартнера какой-либо частицы.) Слабые взаимодействия включают в себя частицы, называемые лептонами: их суперпартнеров называют слептонами. Подобным образом и у кварка может быть партнер с нулевым спином, который называется скварком. В целом, партнеры всех известных частиц (кварков, лептонов, гравитонов, фотонов и так далее) называются счастицами, или суперчастицами. Эти счастицы нам еще только предстоит обнаружить при помощи ускорителей частиц (возможно, наше оборудование еще не достаточно мощное, чтобы мы могли получить эти частицы).
Но поскольку все субатомные частицы являются либо фермионами, либо бозонами, то в теории суперсимметрии содержится потенциал объединения всех известных субатомных частиц одной простой симметрией. Теперь у нас есть достаточно обширная симметрия, которая включит в себя целую Вселенную.
Представьте себе снежинку. Пусть каждый из шести ее кончиков представляет субатомную частицу, при этом бозоны расположены через один и за каждым бозоном следует фермион. Красота этой «суперснежинки» состоит в том, что при вращении она остается неизменной. Таким образом, эта суперснежинка объединяет все частицы и их счастицы. Поэтому, если мы попытаемся построить гипотетическую единую теорию поля, в которой есть лишь шесть частиц, то вполне естественно, что лучшим претендентом на эту роль явится супер снежинка.
Суперсимметрия помогает устранить все оставшиеся бесконечности, которые для других теорий оказывались роковыми. Ранее мы уже упоминали о том, что большая часть отклонений устраняется благодаря топологии струны — то есть, поскольку струна обладает конечной длиной, силы не стремятся к бесконечности при приближении к самой струне. При рассмотрении оставшихся отклонений мы видим, что они делятся на два типа, исходя из взаимодействий бозонов и фермионов. Однако два типа действий, производимых этими частицами, всегда имеют противоположный знак, а потому действие фермиона всегда компенсируется действием бозона! Иными словами, поскольку действия бозона и фермиона всегда имеют противоположный знак, то оставшиеся в теории противоречия взаимоустраня-юхся. Таким образом, суперсимметрия — это не просто витринное крашение. Это не только симметрия, которая дарит эстетическое удовольствие, — это неотъемлемый элемент для устранении отклонений в струнной теории.
Читать дальше
Конец ознакомительного отрывка
Купить книгу