Все живые организмы, их клетки, органеллы как субструктуры клеток, выполняющие специфические функции, являются в целом совокупностями макромолекул. Живые организмы содержат четыре основных класса биополимеров: белки, нуклеиновые кислоты, углеводы и липиды. Они являются структурной основой всех живых организмов и играют важнейшую роль в процессах жизнедеятельности.
Белки – это высокомолекулярные органические соединения, макромолекулы которых построены из остатков 20 аминокислот (мономеров). Белки играют первостепенную роль в процессах жизнедеятельности всех живых организмов. Им свойственны разнообразные функции: структурная – построение клеток и тканей; регуляторная – ее выполняют некоторые из гормонов; защитная – выполняют антитела; транспортная – выполняет гемоглобин; энергетическая и т. д. Только в организме человека, например, насчитывается свыше 10 млн различных белков. Без белков невозможен обмен веществ. Биосинтез белков идет при участии нуклеиновых кислот. На долю белка приходится примерно 50 % сухой массы всех органических соединений клетки.
Нуклеиновые кислоты, или полинуклиотиды. Эти биополимеры построены из большого числа остатков нуклиотидов и являются составной частью всех живых систем. Этим макромолекулам принадлежит ведущая роль в биосинтезе белков и передаче наследственных признаков организма. Эти кислоты сходны по своему составу и строению, но значительно различаются по молекулярному весу, который составляет диапазон от нескольких десятков тысяч до 150 млн. Существует 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – дезоксирибонуклеиновая кислота – содержит генетическую информацию о последовательности аминокислот в полипептидных цепях и определяет саму структуру белков. РНК – рибонуклеиновая кислота несет ответственность за создание белков. Порядок расположения составляющих молекулы ДНК и РНК нуклеотидов определяет порядок расположения аминокислот, а также их воспроизведение в первичных структурах белков. Следовательно, через молекулы нуклеиновых кислот передается информация о различных наследственных свойствах структур живых организмов и идет реализация механизма наследственности.
Коацерваты
Возрастающая концентрация «первичного бульона» органических веществ приводила к их взаимодействию, объединению и обособлению в некие мелкие структуры в водном растворе, которые А. Опарин назвал коацерватными каплями или коацерватами. Следует отметить, что в настоящее время структуры, подобные коацерватам, получают искусственным путем, смешивая растворы разных белков. Коацерваты, по А. Опарину, – это мельчайшие коллоидные образования типа капель, обладающие осмотическими свойствами. Благодаря взаимодействию электрических зарядов в слабых растворах происходит агрегация молекул. Молекулы воды создают поверхность раздела вокруг образовавшегося агрегата. Предположительно, что уже одновременно с образованием полимеров (полимеризации) шло и образование биологических мембран, ограничивающих вещества коацервата от среды.
Образование мембран считается трудной задачей химической эволюции. Без них не может быть даже самой примитивной клетки. Предполагается, что мембранные структуры, как и ферменты, возникли в ходе образования коацерватов. Биологические мембраны – это белково-липидные агрегаты, характеризующиеся полупроницаемостью. Они ограничивают вещество коацервата от окружающей среды, придавая прочность коацерватной «упаковки».
Коацерваты имеют сложную организацию и обладают рядом свойств примитивных живых систем. Так, они способны к поглощению из окружающей среды различных веществ, которые вступают во взаимодействие с веществами коацервата. Это похоже на первичную форму усвоения веществ (ассимиляцию). Образующиеся в коацервате продукты распада выделяются наружу, проходя через полупроницаемую перегородку. Однако, в принципе, коацерваты нельзя отнести к живым системам, поскольку они не обладают способностью к саморегуляции и самовоспроизведению. Они обладают лишь предпосылками живых систем.
Образование простейших форм живых организмов
Переход коацерватов как преджизненных систем к живому – это главный вопрос в учении о происхождении жизни. Он связан с действием механизма конвариантной редупликации. В ходе предбиологического отбора выживали те системы, которые имели не только способность к обмену веществ, но и особое строение макромолекул. Это обусловило появление главного качества живого – наследственности. При появлении устойчивого механизма воспроизведения генетической информации эра химической эволюции закончилась. Наступило время биологической эволюции, эра естественного отбора.
Читать дальше
Конец ознакомительного отрывка
Купить книгу