подготовить телескоп, его электронные блоки и приемники к работе, т. е. выполнить ряд последовательных операций по включению определенной последовательности режимов, включить питание, раскрутить гироприборы или компрессоры и холодильные установки, подключить астрогиды, их приводы и т. п.;
подготовить к включению и включить систему регистрации измеряемых параметров и контроля работы обеспечивающих систем;
включить телескоп, провести измерения и их регистрацию;
переориентировать станцию на новый источник и опять провести регистрацию и т. д. вплоть до окончания серии наблюдений.
Очевидно, что все эти операции, легко алгоритмизируются, [8] Под алгоритмизацией здесь понимается описание словами или уравнениями, или логическими условиями всех операций, из которых состоит функционирование данной машины, процесса и которые нужно выполнить для решения задачи данных наблюдений или экспериментов.
а возможность автоматизации этого процесса, включая выполнения подстроек, выбора целей, времен экспозиций и т. п., не вызывает сомнений. То же самое можно сказать и о таких работах, как фотографирование, технологические и биологические эксперименты. Правда, здесь тут же возникают некоторые осложнения: простые процессы перезарядки кассет, технологических печей, термостатов автоматизируются дорогой ценой существенного усложнения, а, например, оценку «стоит ли осуществлять фотосъемку: не слишком ли много облаков» в автоматическом режиме решить весьма затруднительно.
Причем следует отметить, что работает и другой фактор — сам факт наличия человека на станции. Если заранее известно, что на станция будет находиться человек, то зачем многократно усложнять аппаратуру (например, решая задачу многократной перезарядки фотоаппаратуры) и тем самым снижать надежность выполнения экспериментов? Ведь человек легко сам может настроить аппаратуру, установить капсулу в нагревательную печь, набрать с пульта требуемый режим плавки и т. п. Некоторые из этих работ — регулировки, настройки, изменения программы измерений — и в будущем желательно оставить за человеком.
Но все это приводит к тому, что человек на станции оказывается вовлеченным в слишком большой и разнообразный круг операций. Это приводит, с одной стороны, к перегрузке, а с другой стороны — к снижению эффективности всего комплекса, поскольку по сравнению с машинами человек на станции обладает определенными недостатками. Он должен тратить время на сон (9 ч — такова норма, принятая сейчас на станциях «Салют»), на физические упражнения (2,5 ч — такова необходимая плата за профилактику невесомости), на завтрак, обед и ужин (минимум 2 ч, учитывая время на приготовления к «трапезе»), на отдых (1–1,5 ч — так называемое «личное время»), на связь с Землей (1–1,5 ч в сутки), на медицинский контроль (около 1 ч).
Таким образом, время, которое он может выделить на целенаправленную работу, составляет в день всего несколько часов. А ведь нужно еще учесть два выходных дня в неделю, дни медицинского контроля, дни, идущие на операции обслуживания (коррекции, стыковки, расстыковки, консервации, расконсервации, перенос грузов, заправки и т. п.). Все это приводит к тому, что время, выделяемое на выполнение исследований и экспериментов уменьшается, и временной КПД пилотируемой станции оказывается низким.
Как же выйти из этого положения?
В случае решения задач первой группы очевидно, что следует стремиться к тому, чтобы полностью освободить человека от функций контроля и управления бортовой аппаратурой, от функции анализа состояния. Однако это, конечно, осуществимо лишь при условии проведения необходимых мероприятий по увеличении надежности работы и по обеспечению контроля и анализа состояния комплекса без участия экипажа. Разрешение данной проблемы возможно двумя путями, и, по-видимому, какое-то время будет использоваться и тот и другой.
Первый путь — обеспечение функций управления бортовой аппаратурой, контроля и анализа состояния за счет работы наземной службы, что возможно только в случае обеспечения практически непрерывной радиосвязи Земля—орбитальный комплекс. Этого можно добиться либо за счет равномерного размещения на поверхности суши и океанов достаточно большого количества командно-измерительных пунктов (порядка 200–300 пунктов), связанных каналами связи с центром управления полетом, либо за счет использования системы спутников-ретрансляторов для непосредственной связи со станцией, располагаемых на стационарной орбите (как это, например, было осуществлено во время совместного полета кораблей «Аполлон» и «Союз» в 1975 г.).
Читать дальше