По мнению специалистов, подобные космические фабрики начнут действовать уже в 1990-х годах.
Исследование физических основ космического производства
Процессы тепло- и массопереноса.Выяснение особенностей процессов переноса тепла и массы в условиях, близких к невесомости, необходимо для оптимальной организации производства в космосе новых материалов. С целью изучения этих особенностей проводятся как теоретические, так: и экспериментальные исследования.
Один из таких экспериментов был выполнен на космической станции «Салют-5» космонавтами В. В. Горбатко и Ю. Н. Глазковым в феврале 1977 г. Целью этого эксперимента было исследование процесса взаимодиффузии расплавленных веществ в условиях, близких к невесомости.
Эти исследования на станции «Салют-5» проводились с помощью специального прибора «Диффузия» — Прибор представлял собой цилиндрическую электронагревную печь, содержащую внутри две кварцевые ампулы, каждая из которых была частично заполнена дибензилом, а частично — толаном. Эти органические вещества обладают различной плотностью и при комнатной температуре находятся в кристаллическом состоянии. Ампулы в цилиндрической электронагревной печи располагались таким образом, что небольшая массовая сила, возникавшая из-за аэродинамического торможения станции, была направлена вдоль их оси.
После включения прибора оба вещества расплавились, и в течение трех суток продолжался процесс их взаимодиффузии через границу раздела расплавов. Температура по длине ампул поддерживалась постоянной. После отключения прибора происходило охлаждение и затвердевание сплава, структура которого имела поликристаллический характер.
Для сравнения результатов космического эксперимента с теорией с помощью ЭВМ был выполнен расчет процесса переноса массы для условий, соответствующих эксперименту с прибором «Диффузия». Расчет показал, что поскольку температура по длине ампулы оставалась постоянной в ходе эксперимента, тепловая конвекция должна отсутствовать, а возникающая на границе раздела жидкостей концентрационная конвекция [3] Концентрационная конвекция, в отличие от тепловой, обусловлена не перепадом температур, а перепадом концентрации в объеме.
оказывала заметное влияние на перенос массы лишь на начальном этапе эксперимента. Иными словами, согласно проведенным расчетам, основной вклад в перенос массы в исследованных условиях должны были дать чисто диффузионные процессы.
После проведения эксперимента и возвращения космонавтов на Землю доставленные из космоса ампулы были тщательно изучены в лаборатории. Исследования распределения вещества по длине ампулы позволили определить значение коэффициента диффузии. Для сравнения на Земле были выполнены контрольные опыты с такими же ампулами. Оказалось, что величина коэффициента диффузии, определенная в космических условиях для сплава дибензила с толаном, близка к теоретическому знанию (около 9,5 · 10 –6см/с 2) и несколько превосходит величину, полученную в контрольных опытах на Земле, но это расхождение находится в пределах ошибки метода. Следует отметить также, что на Земле отсутствует возможность точно воспроизвести характер тех микроускорений, которые воздействовали на расплав в космосе.
Близкий по замыслу эксперимент также был поставлен на космической станции «Скайлэб». В отличие от исследований, выполненных на станции «Салют-5», американские ученые изучали не взаимную диффузию двух различных веществ, а более простой случай — процесс самодиффузии. С этой целью в цинковый цилиндрический стержень вставлялся диск, изготовленный из радиоактивного изотопа цинка Zn 65. При нагреве стержень плавился, вдоль него устанавливался перепад температуры, в результате чего начинался процесс диффузии радиоактивного изотопа в основной материал (самодиффузия). В предположении, что в космических условиях влиянием конвекции на перенос массы можно пренебречь и основную роль там играет процесс диффузии, был выполнен расчет распределения радиоактивного изотопа по длине стержня. Результаты расчета хорошо совпали с данными космического эксперимента (рис. 7). В контрольных экспериментах, проведенных с аналогичными образцами на Земле, эффективный коэффициент диффузии радиоактивного цинка вследствие конвекции оказался в 50 раз выше, чем для космических условий.
Рис. 7. Распределение радиоактивного цинка вдоль образца (о и Δ — эксперименты на Земле для двух положений образца, сплошная линия — расчет и эксперименты в космосе)
Читать дальше