Что же касается межзвездных расстояний, то и без всяких вычислений видно, что попытка обнаружить прожектор была бы совершенно безнадежной. Кроме того, в этом случае мы столкнулись бы с новой трудностью решающего характера: излучение Солнца в направлении оси прожектора на много порядков больше излучения самого прожектора. Таким образом, даже самые лучшие из современных прожекторов совершенно не в состоянии послать обнаружимый сигнал на межзвездные расстояния.
Положение, однако, коренным образом изменилось в последние годы в связи с усиленной разработкой квантовых усилителей и генераторов излучения. В радиодиапазоне это привело к изготовлению приемников сверхвысокой чувствительности, так называемых мазеров, о чем речь шла в предыдущей главе. Те же принципы, будучи примененными к оптическому и инфракрасному диапазону частот, привели к осуществлению исключительно важных и особенно перспективных приборов, получивших название «лазеров». Здесь нас не интересуют возможности использования лазеров как весьма эффективных усилителей света. Для нашей проблемы особый интерес представляют лазеры — генераторы пучков видимого и инфракрасного излучения.
Нас бы очень далеко завело обсуждение физических принципов работы лазеров. Желающих ознакомиться с этим вопросом мы отсылаем к книге Б. Лендьела «Лазеры». — М.: Мир, 1964. Мы здесь интересуемся лазерами с «потребительской» точки зрения, что для наших целей совершенно достаточно.
Основой современных лазеров (так же, как и мазеров) является некоторое «рабочее вещество», которое может быть и твердым и газообразным. На заре развития лазерной техники в качестве такого вещества использовался преимущественно синтетический рубиновый кристалл. В последние годы «твердотельным» рабочим веществом лазеров является стекло, активированное неодимом. Такие лазеры работают на волне 1,06 мкм. Наряду с этим в последнее время большое распространение получили газовые лазеры, где рабочим веществом является углекислый газ CO2. Благодаря специфическим свойствам «рабочего вещества» при определенных условиях с его поверхности в направлении нормали выходит почти параллельный и в высокой степени монохроматический пучок излучения. Современные лазеры могут работать в двух разных режимах. В одном случае лазер может посылать очень короткие импульсы излучения, длительностью до 10–12 с. У современных «твердотельных» лазеров энергия, излученная в каждом из таких ультракоротких импульсов, может доходить до 10 Дж. Длительность импульсов может быть значительно больше, и тогда энергия, содержащаяся в импульсе, естественно, увеличивается. Например, в режиме «свободной генерации» длительность импульса порядка тысячной доли секунды, а энергия в каждом импульсе может доходить до нескольких тысяч джоулей.
Газовые лазеры, использующие CO2 в качестве «рабочего вещества», могут работать в режиме непрерывной генерации, излучая мощность в несколько десятков киловатт. Так как излучение лазера синфазно по всей его поверхности, то, как известно из оптики, угловая ширина посылаемого им пучка будет равна λ/ D , где λ — длина волны света, D — размеры блока «рабочего вещества». Отсюда следует, что даже у современных лазеров размером всего лишь в 1 см угол раствора светового пучка равен приблизительно 5 10-5 рад или 10 с дуги. Если таким пучком осветить Луну, размеры пятна будут около 20 км. Заметим, что угловые размеры пучка могут быть сделаны значительно меньше, если лазер сочетать с некоторой оптической системой типа телескопа.
Пусть мы имеем высококачественную линзу, диаметр которой равен d , причем фокусное расстояние также равно d . Если такую линзу поместить в пучок света, излучаемый лазером, то в ее фокальной плоскости действительное изображение пучка будет иметь размеры λ. Пусть это изображение совпадает с фокусом другой линзы (или зеркала) значительно большего диаметра A , причем фокусное расстояние большой линзы больше или равно A . В таком случае, как легко убедиться, пучок, выходящий из большого зеркала, будет иметь угол расхождения, равный λ/ A . Хотя такие системы еще не изготовлены, в принципе это вполне возможно. Трудности здесь будут хотя и серьезные, но чисто технического характера. Например, необходимо будет разработать системы автоматического контроля и коррекции поверхности большого зеркала, компенсирующие деформации из-за нагревания его поверхности мощным пучком излучения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу