Некоторые рентгеновские источники появляются на короткое время и потом исчезают. Источник Центавр Х-4 излучал очень недолго: он давал импульсы с интервалом 6,7 минуты и через несколько дней исчез.
Как же укладываются рентгеновские источники в наши представления о процессах, происходящих во Вселенной? Скорее всего, это звездоподобные объекты. Но как звезда может испускать рентгеновское излучение? На поверхности самых горячих из известных нам звезд температура слишком низка для возникновения рентгеновского излучения. Излучение же разреженной горячей короны, окружающей некоторые звезды, как и у солнечной короны, является очень слабым.
Рентгеновские импульсы очень коротки. У источника Геркулес Х-1 максимум достигается меньше чем за четверть секунды. Нерегулярные изменения интенсивности источника Лебедь Х-1 происходят за сотые доли секунды.
Как уже говорилось в отношении пульсаров, из скорости изменения интенсивности можно сделать вывод о размерах излучающего объекта. Это справедливо и для видимого света, и для радиоизлучения, и равным образом для рентгеновского излучения источников, открытых спутником «Ухуру».
Например, для источника Лебедь Х-1, у которого изменения интенсивности происходят за сотую долю секунды, рентгеновское излучение должно исходить из области, размеры которой не превышают отрезка, проходимого светом за 1/100 секунды. А это меньше 10 000 километров, меньше сотой доли солнечного радиуса. Речь идет, таким образом, об очень малых объектах, которые тем не менее излучают в тысячу раз больше энергии, чем Солнце. Об их малых размерах говорит и резкий характер затмений источника Геркулес Х-1: заходя за звезду, источник сразу пропадает.
Коль скоро рентгеновские источники так малы, можно предположить, что здесь как-то замешаны белые карлики или нейтронные звезды. Это предположение позволяет к тому же объяснить появление рентгеновского излучения. В начале главы мы уже говорили, что для возникновения рентгеновского излучения нужна температура в миллионы градусов. А когда вещество падает на белый карлик или тем более на нейтронную звезду, то оно из-за огромного ускорения силы тяжести попадает на поверхность звезды с такой скоростью, что при его торможении легко может развиваться температура в несколько миллионов градусов. Этим вполне естественно объясняется происхождение рентгеновского излучения. Но откуда берется вещество, которое с огромной скоростью «проливается» на поверхность белого карлика или нейтронной звезды? Связано ли это с тем, что большинство рентгеновских звезд, а возможно и все, входят в состав двойных систем? Если нормальная звезда и белый карлик (нейтронная звезда) образуют двойную систему и нормальная звезда, подобно Солнцу и многим другим звездам, выбрасывает в пространство вещество, то часть этого вещества будет захвачена гравитационным полем спутника. Захваченное вещество будет падать на поверхность спутника и при этом нагреваться до такой степени, что возникнет рентгеновское излучение (рис. 10.9).

Рис. 10.9. Возникновение рентгеновского излучения в двойной системе. От звезды (красный круг), идет звездный ветер, направление которого показано черными стрелками. Обращающаяся вокруг главной звезды нейтронная звезда (или белый карлик) захватывает часть вещества, и под действием гравитации оно с большой скоростью падает на ее поверхность. При ударе вещество нагревается до такой степени, что начинает испускать рентгеновские лучи.
История рентгеновского источника
Теперь мы можем составить примерную картину рентгеновского источника. Его история могла бы выглядеть следующим образом: две звезды различной массы долгое время обращаются одна относительно другой (рис. 10.10). Более массивная звезда первой израсходует свой водород и готова превратиться в красный гигант. Однако она сбрасывает вещество в пространство или отдает его своему спутнику (а) и превращается в белый карлик (б). Возникает звездная пара, состоящая из звезды главной последовательности и белого карлика. Когда же и звезда главной последовательности израсходует свой водород и раздуется в красный гигант, может случиться, что она заполнит свою полость Роша, и ее компактный спутник начнет отбирать ее массу. Вещество начнет падать на компактный объект и возникнет рентгеновское излучение. Для этого достаточно, чтобы за год на белый карлик «выпадала» одна стомиллионная доля солнечной массы. Можно представить себе и такой случай, когда с поверхности нормальной звезды исходит звездный ветер, который, сталкиваясь с белым карликом, рождает рентгеновское излучение (в).
Читать дальше