Это один из наиболее важных и невероятных этапов истории. Если бы меня попросили назвать дату появления математики, то я без колебаний назвал бы именно эту. Вот тот самый момент, когда числа начинают существовать самостоятельно от исчисляемых ими предметов, отрываясь тем самым от реальных объектов и переходя в разряд умозрительного. Все, что было раньше – рубила, узоры, жетоны, – это только предпосылки, предшествовавшие неизбежному зарождению чисел.
С этих пор числа перешли в разряд абстракции, и со временем сформировалось единообразие в математике, науке, в наивысшей степени абстрактной. Математики не изучают физические объекты, состоящие из соответствующих веществ и атомов. Они рассматривают только идеи. Тем не менее эти идеи имеют огромное значение для лучшего понимания мира!
Закономерно, что появление чисел также способствовало зарождению письменности в целом. Потому что, если основная часть идей могла передаваться устно, для описания числовых характеристик требовалось вносить определенные записи.
Разъединены ли сегодня понятия содержания чисел и их графического выражения? Если я попрошу вас подумать об овце, как вы ее себе представите? Вы, без сомнения, представите блеющее животное на четырех лапах с шерстью на спине. Вам не придет в голову представить четыре буквы, из которых состоит слово «овца». Однако если я попрошу вас представить себе число сто двадцать восемь, что вы представите? Вероятно, в вашем воображении появятся цифры 1, 2 и 8? Мысленное представление больших цифр, кажется, неразрывно связано с их написанием.
Это совершенно беспрецедентный случай. В отличие от всех остальных вещей, для которых письменное обозначение вторично, а первичны устные названия, для чисел написание было первичным, а устные эквиваленты появились уже позднее. Только задумайтесь, как вы произносите «сто двадцать восемь»? Вы скажете: «128: 100 + 20 + 8». После определенного значения невозможно говорить о числах, не задумываясь об их написании.
В наше время встречаются коренные племена, в которых используется очень ограниченное количество слов для числовых обозначений. Так, жители племени пирахан (Pirahã), охотники-собиратели, живущие на берегах Рио-Мэси (rio Maici) в Амазонии, умеют считать только до двух. Для всего, что больше двух, они используют слово, означающее «несколько» или «много». Также в Амазонии живет племя мандуруку (Munduruku), в котором используется пять слов, обозначающих числа, что соответствует количеству пальцев на одной руке.
В современном обществе числа заполонили повседневную жизнь. Они стали настолько распространены, что мы часто забываем, до какой степени сама идея их создания гениальна и что нашим предкам потребовались века, чтобы достичь этого уровня.
На протяжении веков изобретено множество способов написания чисел. Самый простой – это обозначать число количеством символов, равным этому числу. Например, параллельными черточками. Этот метод мы до сих пор часто используем, в частности, чтобы вести счет в игре.
Наиболее ранний пример такого метода исчисления, возникшего еще до появления письменности, кости Ишанго, найден в 1950-е гг. в месте проживания шумеров, на берегу озера Эдуард на территории современной Республики Конго. Данные предметы изготовлены приблизительно двадцать тысяч лет назад! Эти экспонаты длиной в 10 и 14 сантиметров покрыты более или менее равноудаленными насечками. С какой целью они сделаны? Возможно, это была первая система исчисления. Некоторые считают, что это календарь, в то время как другие усматривают более развитые математические формы. Сейчас уже сложно сказать точно. Обе кости в настоящее время экспонированы в Музее естественных наук в г. Брюсселе (Бельгия).
В таком методе подсчета одна черта обозначает одну единицу, что вызывает сложности при описании крупных чисел. Чтобы решить эту проблему, необходимо было ввести обозначения для нескольких элементов.
Они появились уже в Месопотамии. Например, специальный жетон использовался для обозначения десяти овец. Когда произошел переход к письменности, данный принцип сохранился. Так, встречаются символы, обозначающие числа 10, 60, 600, 3600 и 36 000.
В обозначении символов уже в этот период отмечается определенная логика. Так, символы для 60 и 3600 с окружностями внутри обозначают числа в 10 раз больше.
Читать дальше
Конец ознакомительного отрывка
Купить книгу