Поэтому, обращаясь к развитию населения как единой динамической системы, мы будем рассматривать выражение (1) не только как обобщение исторических данных, но и как объективную физическую закономерность и математически содержательное выражение. Оно описывает рост населения как самоподобный процесс, развивающийся по гиперболической траектории, поскольку функция роста (1) — однородная функция. Это свойство, открытое еще Эйлером, указывает на то, что в таких функциях нет характерного внутреннего масштаба. В частности, такой функцией является линейная функция. Однако экспоненциальный рост таким свойством уже не обладает, поскольку он определяется внутренним параметром экспоненциального времени Т e.
Линейный и гиперболический процессы самоподобны, т. е. во все моменты времени относительный рост неизменен.
Однородные функции — линейная, или же гиперболическая, — описывают рост как самоподобный или автомодельный процесс, в котором во все моменты времени относительный рост неизменен. Только в выделенных точках особенностей, или сингулярностей, это самоподобие нарушается. В случае роста по гиперболе это происходит в далеком прошлом, когда население асимптотически приближается к нулю, либо в то критическое мгновение T 1при котором N обращается в бесконечность в момент обострения. В этой сингулярности, при которой функция (1) стремится к бесконечности, состоит главная привлекательность этой формулы, поскольку именно тогда и происходит коренное изменение в развитии системы, связанное с демографическим переходом от стремительного роста к стабильному населению мира.
Мой доклад о росте населения Земли на семинаре Сергея Павловича Курдюмова стал настоящим откровением для меня и для коллектива Института прикладной математики им. М. В. Келдыша. Действительно, в современной прикладной математике такие процессы с обострением , при которых одна или несколько моделируемых величин обращаются в бесконечность за конечный промежуток времени, представляют большой интерес [16,17]. Поэтому Курдюмовым и его коллегами для проблематики режимов с обострением были созданы мощные математические методы, которые, в частности, служат и для обоснования представлений синергетики, развитой немецким физиком Хакеном [18]. Это нашло отражение в обширных приложениях в теории взрывных процессов, ударных волн, в физике фазовых превращений, а также в описании неравновесных процессов развития систем в синергетике и химической кинетике.
Эти понятия принадлежат физике сложных систем, и теперь они применяются к человечеству в целом, став основанием для новых количественных результатов и поучительных качественных аналогий.
Прежде чем мы обратимся к выводам, следующим из закона гиперболического роста, выясним смысл постоянной величины С, которая, как легко видеть, определяет население Земли за год до особенности. Таким образом, эта постоянная зависит от выбранной единицы времени, основанной на времени обращения Земли вокруг Солнца, которая никак не выражает природу человека. Однако, если в эту модель ввести собственную единицу времени, определяемую уже эффективной продолжительностью жизни человека, то это открывает путь к определению пределов применимости (1). Это время τ = 45 близко к среднему возрасту человека, и в рамках модели оно возникает как полуширина глобального демографического перехода (см. рис. 5). Тогда при построении модели время следует выражать в масштабе τ = 45 лет, и вместо постоянной С целесообразно ввести константу К = √C/τ = 60000. В отличие от постоянной С, имеющей размерность времени, К — это безразмерный большой параметр, число, которое определяет все соотношения, возникающие при построении модели роста. В дальнейшем мы увидим, что во всех выводах теории это число становится главной характеристикой той динамической системы, развитие которой мы рассматриваем.
Так, числом К ~ 10 5определяется как начальная популяция Homo 1,6 млн лет тому назад, так и предел, к которому стремится население Земли, ~ К 2≈ 10 млрд, а продолжительность развития человечества оказывается порядка Т 0≈ Кτ ~ 3 млн лет. Величиной порядка К определяется масштаб такой самодостаточной группы людей, как университетский город, наукоград или часть мегаполиса. Москва при населении ~ 10 млн разделена на 100 административных округов по 100 тыс. в каждом. При анализе флуктуации оказывается, что К определяет первичный масштаб корреляций в популяции и численность структур при самоорганизации человечества. Так, малочисленными народами принято считать народы с численностью менее 50000 тысяч.
Читать дальше
Конец ознакомительного отрывка
Купить книгу