Александр Громов - Удивительная Солнечная система

Здесь есть возможность читать онлайн «Александр Громов - Удивительная Солнечная система» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Array Литагент «Эксмо», Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Удивительная Солнечная система: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Удивительная Солнечная система»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?
Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.
Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Удивительная Солнечная система — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Удивительная Солнечная система», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сказанное может повергнуть в легкую оторопь: вещество с плотностью, на порядок превышающей плотность тяжелых металлов, и давлением в 340 млрд атмосфер – газ, да еще идеальный? И тем не менее это так. Почти. Вспомним, что такое идеальный газ. Это газ, в котором столкновения частиц сводятся к абсолютно упругим соударениям без какого бы то ни было иного взаимодействия между ними. Сейчас мы поймем, что в недрах Солнца почти так и есть.

Чтобы преодолеть кулоновские силы отталкивания и слипнуться в ядро дейтерия, хотя бы одному из двух протонов надо иметь энергию порядка 1000 кэВ. Распределение энергий частиц в газе, как мы знаем из школьного курса физики, максвелловское, то есть количество высокоэнергичных частиц падает по гиперболическому закону. Если подсчитать среднюю энергию протона в центре Солнца, то она составит всего-навсего 1 кэВ. Частиц с энергией 1000 кэВ просто не будет. С точки зрения классической физики, звезды типа нашего Солнца и менее массивные, чьи недра нагреты слабее, излучать за счет ядерных реакций не могут.

Но звезды все же излучают, а значит, природа нашла выход из положения. Согласно законам квантовой механики, протоны, имеющие энергию значительно меньше требуемой, скажем, 20 кэВ, все-таки могут с вероятностью, отличной от нуля, реагировать друг с другом. И протоны с такими энергиями в центре Солнца уже есть.

Их мало, конечно. И невелика вероятность реакции между двумя протонами с энергиями всего-навсего в десятки килоэлектронвольт, причем с уменьшением энергии частиц вероятность реакции между ними резко падает. (Именно поэтому главная последовательность диаграммы Герцшпрунга – Рессела идет круто вниз в области красных карликов.) Подсчитано, что в условиях солнечных недр любой случайно выбранный протон вступит в реакцию со своим собратом в среднем через 10 млрд лет.

Казалось бы, чудовищный срок. Однако это именно то, что надо для обеспечения современной светимости Солнца. Вероятность реакции между протонами крайне низка, зато протонов очень много, так что в результате мы на Земле не особенно мерзнем. А кто жалуется на холод, тот пусть спросит бедуина в аравийской пустыне, холодно ли ему днем. Вопрошающему повезет, если ему попадется бедуин, наделенный чувством юмора.

Следующий этап протон-протонной реакции, напротив, идет очень быстро, в среднем за 5 с. Столько времени нужно, чтобы ядро дейтерия поглотило еще один протон и превратилось в ядро гелия-3. И наконец, на третьем этапе два ядра гелия-3 сливаются, образуя ядро гелия-4 и два протона. На это в среднем уходит «всего» миллион лет.

Запишем этапы реакции:

1Н + 1Н → 2D + позитрон + нейтрино + 1,44 МэВ (10 10лет)

2D + 1Н → 3Не + гамма-квант + 5,49 МэВ (5 секунд)

3Не + 3Не → 4Не – ИН + 1Н + 12, 85 МэВ (10 6лет)

Не вся высвободившаяся в результате этой цепи реакций энергия передается звезде – часть ее уносят нейтрино. Все же при образовании одного ядра гелия звезда получает 26,2 Мэв, или 4,2 х 10 -5эрг.

Существует – причем не только в теории, но и в реальности – и другая ветвь той же реакции. Ядро гелия-3 может прореагировать с ядром обычного гелия-4, после чего образуется ядро бериллия-7. Это ядро может захватить протон и превратиться в ядро бора-8 или захватить электрон и превратиться в ядро лития. В первом случае ядро бора-8 претерпевает бета-распад, превращаясь в ядро бериллия-8 с попутным образованием позитрона и нейтрино. (Именно эти солнечные нейтрино были впервые обнаружены на перхлорэтиленовом детекторе; об этом ниже.) Бериллий-8 весьма неустойчив и быстро распадается на два ядра гелия-4. Во втором случае, когда образуется ядро лития-7, оно захватывает протон и опять-таки превращается в бериллий-8, который охотно распадается на две альфа-частицы (ядра гелия-4). Словом, на какие бы ухищрения природа здесь ни шла, какие бы варианты реакций ни предлагала, в результате водород все равно превращается в гелий, выделяя при этом энергию.

Углеродно-азотный цикл состоит из шести реакций:

12С + 1Н → 13N + гамма-квант + 1,95 МэВ (1,3 х 10 7лет)

13N → 13С + позитрон + нейтрино + 2,22 МэВ (7 минут)

13С + 1Н → 14N + гамма-квант + 7,54 МэВ (2,7 х 10 6лет)

14N + 1Н → 15 O + гамма-квант + 7,35 МэВ (3,2 х 10 8лет)

15 O → 15N + позитрон + нейтрино + 2,71 МэВ (82 с)

15N + 1Н → 12С + 4Не +4,96 МэВ (1,1 х 10 5лет)

В этом цикле ядерных реакций на одно получившееся ядро гелия выделяется (без учета нейтрино) 25 МэВ энергии.

Как видим, цикл состоит из четырех актов присоединения протона и двух бета-распадов. Углерод, участвующий в цикле, в конце его восстанавливается и не тратится, являясь, таким образом, «катализатором» реакции. Без углерода этот цикл просто не пойдет, как не шел он в самых первых звездах Вселенной, где углерода еще просто не было (напомню: он вырабатывается в «тройной гелиевой реакции» из ядер гелия в недрах красных гигантов и сверхгигантов при температурах свыше 100 млн К). Внутри Солнца, образовавшегося из космического вещества, уже обогащенного тяжелыми элементами, углерод, естественно, присутствовал с самого начала.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Удивительная Солнечная система»

Представляем Вашему вниманию похожие книги на «Удивительная Солнечная система» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Удивительная Солнечная система»

Обсуждение, отзывы о книге «Удивительная Солнечная система» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x