НЕКОТОРЫЕ ОСОБЕННОСТИ НАШЕЙ ВСЕЛЕННОЙ, ФОРМУЛИРУЕМЫЕ НА ОСНОВЕ АНАЛОГОВЫХ ПРЕДСТАВЛЕНИЙ
В основе научного описания окружающего нас мира лежит представление о полевом строении Вселенной, содержащей вещество поля и его структуру. Вещество поля является массой. Эта масса может быть раздроблена до частиц (квантов), ниже которых ее свойства кардинальным и скачкообразным образом изменяются.
Масса упорядочивается структурой поля и располагается в точках его минимума или максимума. Переход массы осуществляется преимущественно поступательно' вращательными и волновыми перемещениями, то есть практически все движения являются периодическими и вращательными в нескольких координатных системах.
Элементарных частиц (по нашему определению, квантов) в настоящее время открыто более 100. Вероятнее всего, все они являются комбинациями более простых элементов. Реально их число на порядок ниже общепризнанного — около 10–20.
Понимание явлений микромира наталкивается на объективную сложность в виде отсутствия аналогии в сравнении атома и иных частиц с чем-либо из других областей. Например, планетарная модель атома или использование для характеристики субатомных частиц понятая цветность не адекватны действительности. Следует оперировать только понятиями поля, так как даже приписываемое частицам вращательное движение есть на самом деле проявление резонансных совпадений наблюдаемого явления в фиксируемый наблюдателем момент.
Особое место занимает фотон.
Фотон отличается набором свойств, не всегда разрешенных законами нашего мира. Тем не менее фотоны играют существенную роль в нашей Вселенной, поэтому вряд ли можно считать их просто случайными «пришельцами» из иных систем или множеств. Вероятнее всего, фотон — одна из наиболее универсальных структур, имеющая возможность преодолевать границы множеств. При этом фотоны полностью преобразуются на границе, то есть не могут являться носителями информации. Согласно формуле о связи энергии и массы

подход к границе множества (Вселенной) приводит любые так называемые элементарные частицы к единой сущности — квантам света (фотонам), и вся информация, по которой формировались частицы, пропадает. Иными словами, если образование (частица) преодолевает световой барьер и, предположим, та же частица возвращается обратно (опять преодолевая световой барьер), то никакой дополнительной информации она содержать не может.
Вывод: на границе системы происходит разрыв функции — переход через особую точку, где вероятность обратного перехода информационно наполненной частицы отсутствует. А если учесть тот факт, что в реальном мире сохранение функции при переходе через особые точки объективно невозможно, то любое математическое представление о структуре Вселенной следует в обязательном порядке подтвердить экспериментально, дабы не принять желаемую и возможную на бумаге модель за физически существующую.
Подход явления к границам системы также характеризуется изменениями его свойств, например, в пограничных областях, доступных нашим исследованиям. При сверхнизких температурах фиксируются явления сверхпроводимости и сверхтекучести в областях, близких к скорости света, — появление античастиц и пр. Можно с большой степенью уверенности предположить, что в данных случаях происходит резонансное взаимодействие полей нашего объекта с полями других множеств, то есть как бы колебание самой границы множеств, при котором объекты нашей Вселенной видоизменяют свои свойства или (гипотетически) приобретают часть свойств условного вещества другого множества. Только эксперименты в непосредственной близости от границе иными мирами могут дать нам шанс обнаружить, а затем и информатизировать (на начальном этапе косвенно) связь с другими множествами, то есть получить какую-то информацию (основанную на косвенных данных или отрицательных результатах), по крайней мере, о граничных условиях в точке разрыва функции.
Таким образом, физическим континуумом может являться космический вакуум (по нашему определению), существующий в виде энергетически наполненной среды. Проявления материального мира есть как бы пустые точки в вакууме, или всплески над его спокойной, уравновешенной поверхностью.
Читать дальше