Зоны полярных сияний, в которых наблюдателями на Земле отмечена наибольшая активность, находятся на широтах 67° к северу и югу от экватора и имеют ширину около 6°. Действительные размеры овальной области вокруг магнитного полюса, в которой происходят сияния, меняются. Ночью она обычно удалена от полюса на 22° или около того; это противоречит общепринятой, но неправильной точке зрения о том, что полярные сияния происходят над геомагнитным полюсом. Они образуют широкий овал, окружающий полюс.
Вследствие той связи, которая существует между полярными сияниями, свойствами магнитосферы и солнечной активностью, проявления полярных сияний зависят от солнечного цикла, 27-суточного среднего периода вращения Солнца вокруг своей оси, времени года и общего уровня магнитной активности. Обобщая вышесказанное, можно сказать, что наиболее эффективные полярные сияния наблюдаются вблизи максимума солнечной активности. Однажды во время полета из Лос-Анджелеса в Лондон по полярному маршруту, пересекавшему Южную Гренландию, я видел на 67° с.ш. удивительное полярное сияние в виде зеленых занавесей, мерцавших в лунном свете.
Цвет полярных сияний обычно красный или зеленый. Красный цвет излучается атомами кислорода, зеленый — молекулами азота. Излучение заметно также в ультрафиолетовом и инфракрасном диапазонах.
Солнце, таким образом, оказывает заметное воздействие на магнитную оболочку Земли. А как обстоит дело с окутывающей Землю атмосферой? Несомненно, Солнце должно действовать и на нее тоже. В последние годы поразительно вырос интерес к изменениям климата на Земле, причинам климатических изменений и прогнозу будущих тенденций изменения климата. Хотя в общем-то является общепринятым то, что астрономические факторы могут оказывать заметное влияние на климат, нет какого-либо определенного доказательства того, что какое-нибудь отдельное климатическое «событие» в прошлом, такое, например, как эпоха оледенения, может быть приписано астрономическим факторам. Одна из трудностей связана с тем, что хорошие данные о явлениях на Солнце у нас имеются всего лишь за последние три столетия, а тщательные измерения светимости Солнца охватывают менее одного столетия. Эти периоды времени слишком малы по сравнению с характерным временем климатических изменений на Земле, которое, по-видимому, характеризуется более длительными (несколько столетий) промежутками. Следовательно, для того, чтобы охватить данными достаточно продолжительный период, мы должны опираться на информацию о климате и об астрономических явлениях, полученную еще в те времена, когда инструментов для наблюдений не существовало. Мне, как астроному и неклиматологу, казалось, что получить достаточно надежную информацию о характеристиках как климата, так и Солнца за прошедший период трудно, хотя я никоим образом не хочу этим сказать, будто достижения в наших знаниях о Солнце и климате не были впечатляющими. Нет никакого сомнения в том, что климат менялся и продолжает меняться. Геологи отождествили несколько ледниковых периодов за последние 3 миллиона лет, в течение которых толстый слой льда покрывал значительную часть континентов. По геологической шкале времени лед отступил лишь недавно. Но причина ледниковых периодов все еще представляет собой предмет значительных разногласий, и мы не знаем, имеет ли отношение к этой проблеме влияние космоса или Солнца.
Так как это книга по астрономии, то прежде чем искать связь между Солнцем и климатом, я приведу свидетельства изменений Солнца. С некоторыми из этих свидетельств мы уже встречались в более ранних главах при рассмотрении солнечного цикла. Свидетельства отсутствия солнечной активности в XVII веке в период Маундеровского минимума очень убедительны и основаны на исторических записях. В 1960-х годах появился новый метод исследования солнечных вариаций в прошлом вплоть до нескольких тысяч лет назад. В его основе лежит метод измерения количества радиоактивного углерода в старых деревьях.
Радиоактивный углерод, или углерод-14, образуется в верхней части атмосферы Земли, там, где в атмосферу вторгаются пришедшие из дальнего космоса высокоэнергичные заряженные частицы. Когда Солнце активно и на нем много пятен, оно имеет протяженное магнитное поле. Это поле защищает внутреннюю Солнечную систему от высокоэнергичных космических лучей. Когда же Солнце спокойно, его магнитное поле обеспечивает худшую защиту. Тогда на планету попадает больше высокоэнергичных частиц и в верхней части атмосферы образуется больше углерода-14. Этот изотоп углерода имеет период полураспада 5730 лет, так что, если он где-либо был изолирован и накоплен (например, в древесине), можно определить, сколько углерода-14 было там вначале, при условии что он был захвачен не более нескольких тысяч лет назад.
Читать дальше