К атомному ядру: радиоактивность.
Заряд электронов отрицательный, но атомы, которые, очевидно, включают в себя электроны, нейтральны. Значит, где-то в атоме должен быть положительный заряд, чтобы нейтрализовать отрицательные электроны. Следующей задачей стало определение того, где внутри атома расположен положительный заряд. Томсон предложил модель «булочки с изюмом», согласно которой положительный заряд заполняет весь атом, а электроны в нем как изюминки в булочке. Японский ученый Хантаро Нагаока (1865–1950) предположил, что в середине атома находится положительно заряженная частица, вокруг которой обращаются более легкие электроны, как планеты вокруг Солнца. В обоих случаях притяжение между положительным и отрицательным зарядами удерживает электроны в атоме.
Выяснить, какая из этих двух моделей верна, выпало Эрнесту Резерфорду. Он вырос в Новой Зеландии и приехал учиться в Кавендишскую лабораторию в 1895 году. Через три года он стал профессором в университете Мак-Гилла, в Канаде, где и работал до 1906 года. Затем он перебрался в Манчестер, который был одним из ведущих центров физических исследований. Там он занялся изучением структуры атома. В 1919 году Резерфорд вернулся в Кавендишскую лабораторию, став ее директором (рис. 16.7).

Рис. 16.7. (а) Анри Беккерель (1852–1908) и (б) Эрнест Резерфорд (1871–1937).
После приезда в Кембридж Резерфорд занялся исследованием радиоактивности, открытой еще в 1896 году Анри Беккерелем в Париже. Пытаясь вызвать рентгеновское излучение у различных материалов, Беккерель выставлял их на солнце. Одним из этих материалов оказалось соединение урана. Этот образец даже без предварительного облучения на солнце «засветил» фотографическую пластинку, которая тоже лежала в темноте. Уран испускал какие-то лучи! Через несколько лет Мария Склодовская-Кюри и Пьер Кюри, терпеливо переработав тонну урановой руды (урановой смолки) в своей скромной парижской лаборатории, открыли элемент радий. Он излучает в миллионы раз сильнее урана (рис. 16.8). Резерфорд обнаружил три типа радиоактивных лучей и назвал их альфа-лучами, бета-лучами и гамма-лучами. Они дали ключ к атомному ядру. Как мы уже знаем, гамма-лучи — это коротковолновое электромагнитное излучение; а что такое альфа-лучи и бета-лучи?
Беккерель измерил у бета-лучей отношение массы к заряду и обнаружил, что у этих отрицательно заряженных частиц оно такое же, как у электронов. Следовательно, бета-лучи — это электроны, испущенные радиоактивным веществом. Резерфорд сумел измерить и отношение массы к заряду у положительно заряженных альфа-частиц. Оказалось, что оно вдвое больше, чем у положительного иона водорода. Если заряд альфа-лучей составляет одну единицу, то их масса должна вдвое превышать массу атома водорода. Но Резерфорд сделал правильный вывод, что заряд альфа-частиц составляет две единицы, а это приводит к четырем единицам атомной массы. Значит, альфа-частицы — не что иное, как ионизованные атомы гелия. Это подтвердили коллеги Резерфорда по университету Мак-Гилла — Уильям Рамзай (1852–1916) и Фредерик Содди (1877–1956), обнаружившие гелий, выделяющийся из соединения радия.

Рис. 16.8. Мария Склодовская-Кюри (1867–1934) и Пьер Кюри (1859–1906).
В своем исследовании 1903 года Резерфорд и Содди объяснили радиоактивность: это процесс, в котором один химический элемент превращается в другой. Когда атом излучает альфа-частицу, его атомный номер в периодической таблице уменьшается на два, а если он излучает электрон, его атомный номер увеличивается на единицу. Это была радикальная идея: с эпохи смерти алхимии постоянство элементов никогда не подвергалось сомнению. Это считалось базовой аксиомой — элементы не могут ни возникать, ни разрушаться. Но предположение Резерфорда и Содди было основано на точных измерениях, показавших, что независимо от внешних условий радиоактивный элемент всегда одинаковым путем превращается в другой элемент. Например, радиоактивный торий превращается в газ радон, который сам радиоактивен. Но активность радона быстро снижается: через 1 минуту она составляет уже половину, через 2 минуты — одну четверть, через 3 минуты — одну восьмую, и т. д. Резерфорд и Содди показали, что это связано с распадом самого радона: за минуту распадается половина исходного газа, за следующую минуту распадается половина от оставшегося газа, и т. д. Можно сказать, что радон имеет время полураспада, равное одной минуте (точнее — 54,5 секунды). Время полураспада сильно меняется от одного радиоактивного вещества к другому. Оно составляет 1600 лет у радия, 1,4 x 10 10лет у тория и 4,5 x 10 9лет у урана. Распадом радиоактивных элементов пользуются для определения возраста. Мы вернемся к этому вопросу при обсуждении возраста Земли (см. главу 29).
Читать дальше