В противном случае, если сумма внутренних углов треугольника меньше чем 180°, а отношение длины окружности к ее диаметру больше я и если через данную точку можно провести любое число линий, параллельных данной линии, то существо понимает, что оно живет в гиперболическом пространстве. Гиперболическое пространство тянется на бесконечное расстояние и не имеет аналога в обычной жизни. Форма седла, точнее — его центральной части, более или менее напоминает ограниченную область гиперболической поверхности.
Границей между сферическими и гиперболическими поверхностями служит плоская поверхность, или двумерное евклидово пространство. Привычные для нас законы евклидовой геометрии справедливы в этом и только в этом пространстве: сумма внутренних углов треугольника точно равна 180°, отношение длины окружности к ее радиусу в точности равно я, а через точку можно провести одну и только одну прямую, параллельную другой прямой (рис. 15.4).

Рис. 15.3. Треугольники в плоском, гиперболическом и сферическом пространстве. Сумма углов в разных пространствах неодинакова.

Рис. 15.4. Параллельные линии в разных пространствах. В плоском пространстве через данную точку Р можно провести только одну прямую, параллельную другой прямой. В гиперболическом пространстве можно провести любое количество таких прямых. В сферическом пространстве все прямые линии пересекаются, поэтому провести параллельную линию невозможно.
Значение кривизны пространства.
Математик Вильям Клиффорд (1845–1879) переводил труды Римана на английский язык и в процессе этой работы был очарован идеями Римана о связи между физическими явлениями и геометрией. Он стал развивать эти идеи. Читая лекцию в Кембриджском философском обществе, посвященную «науке о пространстве», он обсуждал нашу возможность судить о геометрии пространства на астрономических масштабах и на масштабах столь малых, что они недоступны для наблюдения (то есть в мире элементарных частиц). При этом он утверждал, что «малые области пространства фактически похожи на небольшие холмики на поверхности, которая в среднем плоская, таким образом, обычные законы геометрии к ним неприменимы». Он полагал, что «это свойство искривленности или искаженности непрерывно передается от одной области пространства к другой наподобие волны» и что «изменение кривизны пространства — это как раз то, что реально происходит в явлении, которое мы называем движением материи».
Клиффорд заключил, что весь физический мир (движение всей материи) есть результат этого свойства пространства. Для того времени его идеи были революционными, поскольку само понятие пространство еще не было осознано многими учеными. В год рождения Эйнштейна умер Клиффорд. Он был совсем молод и не сумел более глубоко разработать свою идею. Его видение мира опередило общую теорию относительности на 40 лет.
Отправной точкой для общей теории относительности Эйнштейна стал закон Галилея о том, что все тела падают с одинаковым ускорением независимо от их массы (если пренебречь трением о воздух). Это эмпирическое правило можно понять как следствие Второго закона Ньютона (сила равна массе, умноженной на ускорение) и Ньютонова закона гравитации (сила тяготения пропорциональна массе тела). Оба эти закона содержат один и тот же коэффициент пропорциональности — массу тела, поэтому ускорение падающего вниз тела не зависит от его массы. Но раз мы имеем дело с двумя независимыми законами природы, то должны поинтересоваться: как получилось, что оба они содержат один и тот же коэффициент.
Согласно Эйнштейну, эго неслучайно. Закон Галилея имеет глубокий смысл, он показывает, что гравитация не реальная сила, а лишь фиктивная. Нам уже знакомы фиктивные силы: например, Кориолисова сила, описанная французским физиком Гаспаром Кориолисом (1792–1843). В Северном полушарии ветры, дующие с юга, пытаю тся повернуть на восток, а дующие с севера поворачивают на запад. Это приводит к вращению воздушных потоков против часовой стрелки вокруг областей низкого давления. Сила Кориолиса — это всего лишь проявление вращения Земли вокруг оси, а вовсе не реальная сила. Для фиктивных сил свойственно, что они сообщают одинаковое ускорение всем телам независимо от их характеристик, таких как масса, электрический заряд и т. п.
Читать дальше