Идею маятниковых часов реализовал голландский физик Христиан Гюйгенс (1625–1695). В его маятниковых часах была решена проблема поддержания колебаний, а измерение времени происходило с ошибкой около 10 секунд в сутки, в отличие от существовавших до этого механических часов, дававших ошибку около 15 минут в сутки.
Возвращаясь к вопросу о движении Земли и имея в виду более поздние работы Ньютона по гравитации, укажем, что именно Гюйгенс в 1659 году определил, каким должно быть ускорение к центру, чтобы тело двигалось по круговой орбите. Он показал, как вычислить ускорение к центру: нужно разделить квадрат круговой скорости на радиус окружности. Например, на экваторе Земли скорость равна 464 м/с, а радиус Земли равен 6,380 x 10 6м. Таким образом, центростремительное ускорение, необходимое для того, чтобы удержать воздух у поверхности Земли, равно (464 х 464)/6 380 000 = 0,0337 м/с 2. С другой стороны, притяжение Земли придает телу центростремительное ускорение 9,8 м/с 2, что гораздо больше необходимого значения. Прежде боялись, что вращение Земли может стать причиной ветра и сдуть воздух в космическое пространство. Приведенные выше вычисления показывают, что ускорение, вызванное гравитацией, гораздо больше, чем требуется для удержания воздуха у поверхности вращающейся Земли. Поэтому нет никакого риска, что воздух улетит в космос.
Эволюция телескопа.
Первые астрономические наблюдения Галилея показали, насколько сильно даже маленький телескоп увеличивает возможности человеческого глаза. Телескоп собирает намного больше света, чем глаз. Это дает возможность увидеть гораздо более тусклые объекты, чем доступные невооруженному глазу. Например, в области Плеяд Галилей увидел 36 звезд вместо обычных 6. На фотографиях, полученных с помощью современных телескопов, в этой группе видны сотни звезд. Большой объектив значительно улучшает и разрешение. Это означает, что две близкие звезды, сливающиеся для невооруженного глаза в одно пятнышко, можно увидеть по отдельности в телескоп. Способность собирать больше света, чем глаз, и высокое разрешение дают возможность увидеть больше структур и тусклых объектов на звездном небе. Высокое разрешение позволяет более точно определять положения (координаты) звезд. А это очень важно при измерении расстояний до звезд, о чем мы расскажем в следующей главе.
Конструкцию телескопа Галилея вскоре улучшил Кеплер, предложив оптическую схему, используемую по сей день. В «кеплеровском» телескопе большая объективная линза дает изображение небесного объекта на большом расстоянии от объектива. Детали этого изображения рассматривают с помощью увеличивающей выпуклой окулярной линзы.
Качество изображения первых телескопов было плохим. Простые линзы отягощены цветовыми ошибками (хроматическая аберрация), вызванными тем, что световые лучи разного цвета не фокусируются в одной точке, поэтому изображение звезды получается размытым пятнышком, окруженным цветными разводами. В определенной степени линза действует как призма. Изобретение ахроматических объективов в XVIII веке намного улучшило изображения. Прежде для этого были вынуждены сооружать очень длинные телескопы. Когда отношение диаметра объективной линзы и ее фокусного расстояния мало, лучи света лишь слегка преломляются, цветовая погрешность меньше, а изображение резче. На рис. 7.4 показаны такие длинные телескопы Парижской обсерватории.

Рис. 7.4. «Воздушные телескопы» Парижской обсерватории XVII века. Даже при том, что они были очень неудобными в работе, с их помощью были сделаны открытия.
Христиан Гюйгенс тоже строил телескопы, самый большой из которых имел в длину 37 м. Невозможно было сделать такую гигантскую сплошную трубу, поэтому объективная линза устанавливалась на верхушке шеста или на коньке кровли, а управляли ее положением с помощью длинной веревки, стоя на земле и удерживая окуляр перед глазом. Судя по всему, очень неудобно было работать с таким инструментом, следя за вращающимся звездным небом. Тем не менее при помощи этих инструментов получали интересные наблюдательные данные. Например, Гюйгенс обнаружил, что странные отростки у Сатурна, замеченные Галилеем, в действительности являются тонким плоским диском вокруг планеты в ее экваториальной плоскости.
Другим знаменитым наблюдателем эпохи длинных телескопов был поляк Ян Гевелий (1611–1687), имевший собственную обсерваторию в Гданьске. Это была первая в мире обсерватория, оснащенная телескопом. Наблюдениями занималась и его жена Елизавета. Инструмент Гевелия имел 45 м в длину! Его сложная система канатов и реек напоминала оснащение парусного судна и для управления определенно нуждалась в сноровке моряка. С помощью этого телескопа Гевелий исследовал поверхность Луны и составил ее хорошие карты. Когда мы говорим о лунных «морях», следует помнить, что так их назвал Гевелий. Теперь мы знаем, что это низины, наполненные застывшей лавой.
Читать дальше